S3Food: Portable real time scanner for contamination in milk production

Funded project within S3Food: Next Generation Sensors B.V. and CIED B.V.in the Netherlands aim to develop a portable real time scanner for contamination in food production, called “The Revolutionary Real Time AgroFood Contaminant Screener”.

S3Food is the pan European project for digital Industry 4.0 transition in which DSP Valley takes part as one of the 13 international consortium partners. It funds this great project that will develop the portable real time scanner for contamination in milk production. The second-largest food type in the agri-food testing market is the dairy industry, which is why the project will start with that industry as the launching market. After the product launch meat and fruit/vegetable companies – and food/feed companies in general – will follow rapidly after that.

An unprecedented portable contaminant screener will be delivered in this Lab-to-Sample. The development of Minimum Viable Product (MVP) allows the partners to rapidly commercialise their joint innovation. The proposed screener’s underlying technologies are:

– an unparalleled portable mass spectrometer
– a novel rapid sampling probe
– a novel blockchain ledger
– and machine learning algorithms

These algorithms are resulting in a revolutionary real-time dairy contaminant screener. Accurate, real-time contamination detection at the source would:

1) prevent contamination extension because of milk pooling. This is significantly reducing food waste.
2) reduce analysis costs and
3) drastically reduce the need for costly food recalls

Next Generation Sensors B.V. + CIED B.V. are also collaborating with The Maastricht MultiModal Molecular Imaging Institute (M4I).

Verhaert : AI assisted robotic spinal surgery

digital rendering of a robotic arm scanning a patient lying on a surgical table

DSP member Verhaert Masters in Innovation has received a research grant from VLAIO to develop state-of-the-art artificial intelligence (AI-)driven robot technology.

In the research project, Verhaert will develop a robotic platform for spinal surgery which uses algorithms developed by Deep Learning (AI). The developed algorithms will transform high resolution preoperative 3D images, like CT scans and MRIs, to high resolution images of the patient in his or her new physical laying position during surgery. The novel part of the proposed procedure is the significant reduction of the use of cancerogenous ionizing x-ray beams during surgery, like CT-scans, while still being able to perform sub-millimeter surgery and catheter tracking.

3-step surgical procedure
Defining the concept
The physical laying position of the patient changes before, at the start and during surgery, which has an impact on the physical position and form of the spinal cord. All these changes in position need to be taken into account in order to perform sub-mm surgery.

  • Before: the patient is laying on her back for high resolution CT/MRI scans.
  • At the start: the patient is laying on her stomach.
  • During: the patient is laying on her stomach and slightly moves because of breathing, heartbeat and the impact of the surgery itself.
Overview of the patient’s physical position before, at the start, and during surgery © VERHAERT

 Before surgery

A high resolution sub millimeter 3D image is taken from the patient several days before surgery. This is done either by a CT-scan or MRI. Typically, the scan is taken while the patient is laying on his/her back. Based on the image the surgery is planned and a trajectory is calculated in order to reach the desired location in the spinal cord.

Before surgery the patient is lying on her back for high resolution CT/MRI scans © VERHAERT

At the start of surgery
At this stage the patient will be laying on his/her stomach. Markers are placed on the patient which are detected by a set of Infra-Red cameras in order to create a 3D model of the patients’ physical position on the operating table. In this new position, a low dose low resolution (supra-millimeter) 2D image is take of the patients’ spine. The 2D image is taken with a C-arm 2D fluoroscopic scanner.

At the start of the surgery the patient is laying on her stomach © VERHAERT

The 2D image and the external marker localizations are used to transform the high resolution pre-surgery 3D image into a newly reconstructed high resolution 3D image of the spine in its new position and form. At this point, the surgeon and its team has a 3D image of the patients’ anatomy in combination with an external reference frame.

This article was written by the Verheart Team

You can visit Verhaert at their website and follow them at their social media accounts:

Sfella, the Smart Flush solution, is ready to enter the Legionella prevention market

In the Netherlands, 300 to 400 people are infected per year with the legionella bacteria (Legionnaires’ disease or Pontiac fever), a number that is rising each year. Victims of the bacteria suffer for a long period, from several months up to more than a year. Between 5 and 10% of cases are lethal.

Legionella infections mostly occur through people breathing in legionella-contaminated aerosols. Aerosols are small droplets of water that are generated, for example, when showering. For this reason, public showers like the ones in sports centres, swimming halls, and saunas, as well as truck stops and camp sites, need to be flushed regularly to prevent legionella growing in the water pipes. The required flushing is often done manually or semi-automated, which is very time consuming, prone to human errors, and labor intensive. Especially when one takes into account the legal obligations to report data like date, time, water temperature, and flush duration per shower.

The risk of legionella contamination has increased in the current Covid-19 crisis with the (temporary) closure of facilities. Showers are not used by clients and facility engineers who have to stay home and are not allowed to come to their facilities for the requisite flushing.

Sfella is the Smart Flush solution by Mioto* that addresses all of the above issues. Sfella is a user-friendly, reliable and easy-to-install solution for legionella prevention. The system is modular, for use within environments with multiple showers. It assures flushing the shower(s) happens after an operator-defined time period. The system reports the important flush data like date, time, duration, and water temperature. This reporting and control of the showers happens locally or remote via a dedicated gateway.

Sfella is powered by the mesh network MyriaNed. It is an infrastructure of nodes that connect directly, dynamically, and non-hierarchically. This allows easy configuration and scalability. Data transfer to and from the shower units (represented by a node) is wireless and bi-directional. Therefore, settings can be changed remotely, while the report with flush-related data can be received remotely in your email inbox. MyriaNed can be configured to use either 868MHz or 2.4GHz. This allows for the optimal fit in each local environment in terms of coverage and energy usage.

In February 2020, just before the first Covid-19 wave struck the Netherlands, van Mierlo Ingenieursbureau B.V. started a pilot program with Sfella on 15 showers in a care institute. The unforeseen Covid-19 crisis forced the care institute to close its sports facilities for several months, a perfect period to test the installed Sfella system. It appears the automatic flushing happened every 72 hours as programmed. Once the facilities opened again in early summer, final confirmation arrived: examinations of the water samples taken showed no legionella contamination in the related water pipes. This offered the most convincing evidence that Sfella delivered.

van Mierlo Ingenieursbureau is now to actively approaching the Dutch market and discussing with sales and distribution partners, as well as technology partners, to broaden the Sfella roadmap. If you are interested in partnering for sales and distribution, including outside the Netherlands, please contact us.

A video about Sfella is available at our website.

For further information, please reach out to info@vanmierlo.com

* Mioto is a brand of van Mierlo Ingenieursbureau B.V. in Eindhoven the Netherlands

Fulco Verheul

Responsible for marketing, sales, business development, product management and product development activities at van Mierlo Ingenieursbureau B.V.

The ASCENT+ Access Programme Launches a New Phase to Become the Powerhouse of Researchers and Innovators in Nanoelectronics in Europe

Official Press Release

ASCENT+ mobilises an unprecedented network of knowledge and investment to open access to key European infrastructures and enable academic and industry researchers to address emerging challenges in Nanoelectronics and to accelerate innovation path-finding.

Building on previous success, and with an additional EU investment of €10m, ASCENT+ brings together 15 partners to make world-class facilities available and to foster the Nanoelectronics community. ASCENT+ offers an extensive portfolio to access state-of-the-art processing, modelling and data sets, metrology and characterisation, and devices and test structures for Nanoelectronics. As such, it significantly advances the first phase of the open access programme (ASCENT https://www.ascent.network/) which delivered 100 access projects to researchers from 30 countries across the global research community over the last four years and built a community of over 400 researchers.

ASCENT+ integrates a unique research infrastructure with outstanding credentials. The partners’ facilities at CEA-Leti (FR), Fraunhofer Mikroelekronik (DE), imec (BE), INL (PT/ES) and Tyndall (IE) combine research infrastructure and expertise representing over €2.5 billion of investment and several millennia of accumulated knowledge.

ASCENT+ also includes CNRS (FR), Universiteit Gent (BE), TU Bergakademie Freiberg (DE), JKU (AT) and the University of Padova (IT) as academic partners to advance the project’s offering and further stimulate the user community to bridge the gap between scientific exploration and development of proof-of-concept technologies. This will fast-track the development of next generation information processing devices.

ASCENT+ will grow a first-class research and innovation network through the participation of Silicon Europe Alliance members: DSP Valley (BE), MIDAS (IE), Minalogic (FR) and Silicon Saxony (DE) as well as the SiNANO Institute (FR), reaching out to over 3,700 members.

Giorgos Fagas, ASCENT+ lead and Head of EU Programmes at Tyndall National Institute said “The next era in Nanoelectronics is driven by demonstrations of: (i) quantum advantage using solid-state platforms; (ii) low-power, energy-efficient, high-performance computing based on disruptive devices; and (iii) increased functionality through advanced integration of a diverse range of materials and innovative technologies. ASCENT+ offers an unparalleled access opportunity to users, empowering them to respond to these new problems and to advance knowledge and technology through generating novel results and nurturing talent in their own labs.”

ASCENT+ presents a unique opportunity for Europe to regain global leadership in Nanoelectronics at a pivotal time as the horizon broadens beyond Moore’s law.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 871130.


About the ASCENT+ Partners

Tyndall National Institute is a leading European research centre in integrated ICT hardware and systems. Central to Tyndall’s mission is delivering economic impact through research excellence. We work with industry and academia to transform research into products in our core market areas of communications, agri-tech, energy, environment and health.

Tyndall is home to a high-tech national research infrastructure unique in Ireland and is key to the national economy. Tyndall uses its facilities and expertise to support industry and academia globally and provides large numbers of highly qualified graduate students. Our researchers have won numerous awards for their ground-breaking research on new materials, devices and systems across micro/nanoelectronics and photonics, including in the areas of ICT for Health, smart farming, wearables and the industrial Internet of Things (IoT).

We are also a lead partner in European research programmes. In H2020, we deliver value to European research in 99 projects so far (16 as coordinator).

Further information on TYNDALL can be found at www.tyndall.ie


Imec is a world-leading research and innovation hub in nanoelectronics and digital technologies. The combination of our widely acclaimed leadership in microchip technology and profound software and ICT expertise is what makes us unique. By leveraging our world-class infrastructure and local and global ecosystem of partners across a multitude of industries, we create groundbreaking innovation in application domains such as healthcare, smart cities and mobility, logistics and manufacturing, energy and education.

As a trusted partner for companies, start-ups and universities we bring together more than 4,000 brilliant minds from almost 100 nationalities. Imec is headquartered in Leuven, Belgium and has distributed R&D groups at a number of Flemish universities, in the Netherlands, Taiwan, USA, and offices in China, India and Japan. In 2019, imec’s revenue (P&L) totaled 640 million euro.

Further information on imec can be found at www.imec-int.com


Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, CEA-Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, CEA-Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 3,100 patents, 10,000 sq. meters of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 65 startups and is a member of the Carnot Institutes network.

Follow us on www.leti-cea.com

Fraunhofer-Gesellschaft, headquartered in Germany, is the world’s leading applied research organization. Fraunhofer develops key technologies that are vital for the future and enables the commercial exploitation of this work by business and industry, thus playing a central role in the innovation process. Today, Fraunhofer-Gesellschaft operates over 74 institutes and research institutions with 28,000 employees. Current annual research budget amounts to €2.8 billion. Thereof, €2.3 billion are generated through contract research, including roughly €95 million funded by the European Commission. The Fraunhofer Group for Microelectronics consists of 11 institutes with a combined staff of over 3600 and an annual operational budget of over €500 million. The technology spectrum ranges from 300mm CMOS technologies to hetero-integrated smart devices and novel end user applications. Together with 2 additional institutes of the Leibniz association these institutes are the Research Fab Microelectronics Germany, FMD, the backbone of research and development in microelectronics in Germany.

More information on: www.mikroelektronik.fraunhofer.de

The International Iberian Nanotechnology Laboratory (INL), is the first and, so far, the only, international research organization in Europe in the field of nanotechnology. INL had been established in 2005 by a joint decision of the Governments of Portugal and Spain, with the mission to perform cutting-edge interdisciplinary research and development in nanoscience and nanotechnology and to function as an innovation integrator in multiple application domains.

Operating since late 2010, following an investment of 100 M€, INL is on the Portuguese Road Map of Research Infrastructures. INL is currently financed by member-state contributions, competitive funds from national and international calls, and fees from users and industry. The research and development environment at INL includes a state-of-the-art cleanroom for nanofabrication and comprehensive facilities for testing and nanocharacterization of devices and materials. At the beginning of 2020, there were 368 people of over 40 nationalities working at INL, 312 of them researchers.

More information on: https://inl.int


The SiNANO Institute is the European Academic and Scientific Association for Nanoelectronics, gathering 22 reknown Universities and Research Centers from 13 European countries. Sinano carries out a role of representation and coordination of the associated Organizations in order to strengthen the impact of the research activities at EU level in this very important field for many future applications and markets.

Members of the Institute are particularly exploring disruptive science and technology aspects for long term to identify the most promising topics for future ICT and speed up technological innovation. Activities from More Moore, More than Moore, Beyond CMOS to Smart Systems and System Design are sound competences of Sinano.

We are also organizing international Workshops and Conferences to develop high competence levels in Europe, and participating in roadmap definition. In this respect, the Sinano Institute is the European representative of IRDS. Sinano plays an important role in European structuring and programs, in collaboration with Research Institutes and Industry, and strengthens the overall efficiency of the European research in Nanoelectronics.

More information on: www.sinano.eu


MIDAS Ireland is an industry led cluster consisting of over 60 member organisation from industry, educational, research and government agencies, working together to assist in the development of the electronics based systems sector in Ireland. MIDAS began in 1999 as the Microelectronics Industry Design Association with a focus mainly on the design of advanced integrated circuits. Today MIDAS Ireland represents the entire value chain, as the industry evolves to deliver more complete electronic and software system solutions with €13.5bn export revenue and €325m in annual R&D spend. MIDAS Ireland is the key enabler of networking and collaborative opportunities within our industry and represents the needs of the sector to government. It supports the upskilling of graduate and professional engineers to meet the ever changing needs of this ‘deep tech’ sector.

More information on: www.MidasIreland.ie


DSP Valley is the organization for companies creating, applying, and adapting to electronic solutions and digital technologies in the Low Countries. As a cluster organization, our mission is to Breed Digital Business through Collaborative Business Development. We do this for our members through local, regional, and international networks focused on 5 major areas: Smart City, Smart Health, Smart Mobility, Industry 4.0, Digital Technologies. DSP Valley takes part in European projects such as ASCENT+ as a further broadening of these activities, bringing expertise and a strong network to consortia.

Headquartered in Leuven, Belgium, DSP Valley also has offices in Eindhoven (NL), Antwerp (BE), and Hasselt (BE).

More information at: https://breedingdigitalbusiness.com


Minalogic is a global innovation cluster for digital technologies serving France’s Auvergne-RhôneAlpes region. The cluster supports leading innovators by facilitating networking, fostering collaborative R&D, and providing companies with personalized assistance throughout all phases of business growth. The products and services developed by our members address most industries including ICT, healthcare, energy, advanced manufacturing and mobility.

Minalogic has 400 members, including academic laboratories, RTOs and 320 companies, among which 75% are SMEs. Our members develop and/or integrate components, materials, services and solutions based on innovative microelectronics, photonics and software.

The cluster has certified more than 450 projects that have secured total government funding of €838 million of the more than €2 billion in total R&D spending these projects represent. This resulted in 56 products and generated €3,6 billion in revenue.
Minalogic is a proud member of Silicon Europe and was awarded with Gold Label for Cluster Excellence for the 2nd time in 2016.

More information on: www.minalogic.com/en


With more than 350 members, Silicon Saxony e. V. is the largest high-tech network in Saxony and one of the largest microelectronics and IT clusters in Germany and Europe. Since its foundation in 2000, Silicon Saxony has been a self-financed association linking manufacturers, suppliers, service providers, universities, research institutes, public institutions as well as industry-relevant start-ups in Saxony and beyond.

The cluster’s focus is on technological trends of the present and future – e.g. artificial intelligence, robotics, automation, internet of things, sensors, energy efficiency as well as neuromorphic and edge computing. As a high-profile information, communication and cooperation platform, the association promotes the regional, national and international networking of its members by participating in and organizing industry events and projects.

Moreover, Silicon Saxony is one of the founding partners of Silicon Europe – an alliance of twelve European clusters for advanced electronics and software technologies.
Since 2012, the network bears the GOLD label for excellent cluster management by the European Cluster Excellence Initiative (ECEI).

More information on: www.silicon-saxony.de/en/home


With about 18,000 students and over 2,500 faculty and staff members, the Johannes Kepler University of Linz (JKU) is one of the main universities in Austria. The Semiconductor Physics Division of the JKU, headed by Prof. Armando Rastelli (the JKU PI within ASCENT+), counts 5 permanent staff members, 5 engineers/technicians and about 30 Post Docs/PhD students. The group has a longlasting tradition in the field of epitaxial growth, structural and optical characterization of semiconductor quantum dots and operates a modern cleanroom equipped with instruments for epitaxial growth, lithography, metal and dielectric deposition, etching and bonding. Particularly relevant to this project is the experience on the development of strain-tunable sources of quantum light for applications in emerging quantum technologies.

More information on: www.jku.at/en


Ghent University is a top 100 university and one of the major universities in Belgium, founded in 1817. Ghent University wants to be a creative community of staff, students and alumni, connected by the values the university upholds: engagement, openness and pluralism. Our motto is ‘Dare to Think’: we encourage students and staff members to adopt a critical approach.

Our 11 faculties offer more than 200 courses and conduct in-depth research within a wide range of scientific domains. Ghent University has about 9 000 staff members and over 45 000 students, of which about 12% are international. Ghent University also has a Global Campus in Songdo, SouthKorea, as an important Asian hub for bio industry and life sciences.

Ghent University has very strong research activities including 66 ERC projects (June 2019), over 3 000 publications annually, 618 patents and 69 spin-offs in the last decade, and 22 business development centers which enable intensive collaboration with industry.

More information on: www.ugent.be/en


CNRS/IMEP, Institute of Microelectronics, Electromagnetism and Photonics, with staff of 110 persons (60 permanents, 50 PhDs) belongs to the top French micro and nanotechnology research academic laboratories, particularly for micro- and nanoelectronics, microphotonics, microsystems and microwaves. CNRS/IMEP is focusing on CMOS and post-CMOS nanoelectronics, as well as new materials and smart devices such as i) advanced CMOS components on bulk silicon, SOI, SiGe and strained Si, ii) NW and nanometric quantum devices, iii) advanced device electrical characterization and simulation techniques. CNRS/IMEP has been very much involved in many FP6, FP7, and H2020 European projects during the last 15 years as coordinator and participant. CNRS/IMEP is collaborating with major technological centers in Europe as well as with main semiconductor industries (ST, SOITEC, GF…). CNRS/IMEP has a 30-year track record in the field of advanced characterization and modelling of semiconductor devices, especially on CMOS and emerging technologies.

More information on: https://imep-lahc.grenoble-inp.fr


The TU Bergakademie Freiberg, as a resource university, focuses its research and teaching on how to deal responsibly with the finite resources of this earth. To this end, the six faculties develop efficient and alternative technologies for raw material extraction, energy technologies, materials and recycling processes and contribute significantly to solving economic and ecological challenges. With the engineering, natural, geo, material and economic sciences, the university combines all areas of modern raw materials research in the basic area and application-oriented research. About 4,000 students receive a scientifically sound and practice-oriented education in 72 courses of study. The TU Bergakademie Freiberg has a long history in semiconductor material research. In collaboration with local and international industrial partners and research institutes, the Institute of Applied Physics at the TU Bergakademie Freiberg accompanies the development process from the synthesis and characterization of the semiconductor material towards nanoelectronic devices.

More information on: https://tu-freiberg.de/en


Dating back to 1222, the University of Padova is one of the leading Universities in Italy, with its 32 departments, 40 doctoral degree courses and 44 interdisciplinary research and service centres, covering an exceptionally broad research scope. Unipd currently participates in 134 Horizon 2020 actions (45 as a coordinator) for a total budget of 54 Million Euro.

Within the University, the centuries-old tradition initiated with Copernicus and Galileo continues today at the Department of Physics and Astronomy “G. Galilei”, one of the most important research centres for physics and astronomy in Italy, with involvement in research projects at the highest international competitiveness in many fields of fundamental and applied Physics, including Nuclear and Particle Physics, Astronomy and Astrophysics, and Matter Physics, with state of the art infrastructures and important role or access to large scale international laboratories, and an excellent track record in Semiconductor Physics for micro/nanoelectronics and photonics.

More information on: www.unipd.it/en

IDTechEx Predicts Flexible Electronics will own a Major Slice of the Healthcare Market by 2030

smart Health Patches 2
Athlete wearing the smart Health Patch.

DSP Valley active in Flexible Electronics and Healthcare

Healthcare is a major market for both established and emerging technologies. Flexible Electronics is a growing field gaining more and more momentum. Flexible electronics in healthcare is a combination with a bright future.

As our Newsletter readers and members will know, DSP Valley is currently active in three Flexible (and Wearable) Electronics projects: Flexlines (focused on creating a one-stop-shop for flexible electronics), SmartX (specifically geared towards flexible electronics in textiles), and SmartEEs (aimed at helping innovative companies digitize). This is by design: flexible (and wearable) electronics have high potential. This is in part because of their many possible applications.

One of DSP Valley’s core programs in Smart Health. We’re co-founders of the IBN flanders.health. This year, we’ve worked hard alongside our partners Flanders.bio and MedTech Flanders in getting a Spearhead Cluster for Health Tech off the ground in Flanders.

Collaborative Digital Business Breeding

Our work in the health technology and flexible electronics sectors is essential to our central mission: breeding digital business through collaborative business development. The European Flexible and Wearable Electronics projects and the flanders.health IBN and coming Spearhead Cluster are concrete examples of creating collaborative business opportunities. These go beyond single company, or even single application, vision and seek to build and support strong ecosystems that will be economically sustainable.

This is why we were delighted to read IDTechEx’s analysis. The abstract of their report “Flexible Electronics in Healthcare 2020-2030” confirms DSP Valley’s perceptions. It reinforces our resolve to continue to work hard to bring Flexible Electronics and Health Tech together, in our region and beyond.

Click here to read the summary sent to us by IDTechEx. Please note that we have nothing to do with their research. This is neither an endorsement nor a promotion.

Join us to find out more

Want to find out more about our Flexible (and Wearable) Electronics projects? Check out the upcoming FREE events – click the titles for more information and to register:

22
October2020
Flexible Electronics Webinar Flexlines unites different players providing access to new Flexible Electronics technologies through one-stop-shop concepts in order to accelerate the design, development, and uptake of advanced applications in Flexible & Wearable Electronics. 
14:00 CETOnline
12
November2020
SmartEEs information Session with TNOThe SmartEEs Project is funded by Horizon 2020 and is aimed at supporting SMEs and Mid-caps in integrating flexible and wearable electronics into novel (series of) products.

In this webinar, Corne Rentrop (TNO) and Dieter Therssen (DSP Valley) will explain all about the project and what the benefits are for companies and service providers thinking about applying.
14:00 CETOnline
17
November2020
SmartEEs Information Session with imecThe SmartEEs Project is funded by Horizon 2020 and is aimed at supporting SMEs and Mid-caps in integrating flexible and wearable electronics into novel (series of) products.

In this webinar, Dieter Therssen (DSP Valley), Maarten Cauwe (imec), and Frederick Bossuyt (imec) will explain all about the project and what the benefits are for companies and service providers thinking about applying.
11:00 CETOnline

IDTechEx Report Summary of “Flexible Electronics in Healthcare 2020-2030”

IDTechEx sent this report summary to DSP Valley. You can read more about DSP Valley’s activities regarding Flexible Electronics and Smart Healthcare here.

NB: We are sharing this summary as a service to our readers and members. We are in no way affiliated with IDTechEx.

IDTechEx Report Summary

“The market size for flexible electronics in healthcare will exceed $8.3 billion by 2030”

Dr Nadia Tsao, Principal Analyst at IDTechEx, recently published the below article on the topic of flexible electronics within the healthcare industry.

Flexible Electronics in Wearable Cardiac Monitoring Technologies

In today’s digital age, focus on digital health and the quantified self have led to the rapid rise of heart rate monitoring technologies through wearables such as fitness trackers and smartwatches. Such devices have already proven their ability in detecting hidden heart conditions such as tachycardia and atrial fibrillation in seemingly healthy people. However, the majority of wrist-based devices currently serve only as an advance warning, they are not approved by the FDA for use as medical devices. Thus, cardiologists still need to use alternative technologies for their diagnostic and monitoring needs.

This is where flexible electronics comes in. Cardiac monitoring requires devices to make close contact with the skin, making devices that integrate flexible and even stretchable electronics ideal due to their ability to conform to the skin, the potential for a low profile, and overall patient comfort. IDTechEx forecasts that flexible electronics in cardiac monitoring, deployed in electronic skin patches and electronic textiles, will be a $2 billion market in the year 2030.

IDTechEx have been reporting on flexible electronics for the past decade and have recently published “Flexible Electronics in Healthcare 2020-2030”. In this article, IDTechEx describe how electronic skin patches and electronic textiles are used in cardiac monitoring. To find out more about other technologies for monitoring cardiovascular health, please refer to the IDTechEx report, “Cardiovascular Disease 2020-2030: Trends, Technologies & Outlook“.

Electronic Skin Patches

Electronic skin patches are wearable devices that contain electrical components which are attached to the skin, typically using an adhesive.

In cardiac monitoring, electronic skin patches present an interesting balance between the medical standard, which is a 12-lead ECG test, and consumer electronics such as smartwatches and fitness trackers. While electronic skin patches offer less data than can be obtained through a 12-lead ECG, they present more useful and accurate information than the optical technology used in smartwatches and fitness trackers, and offer continuous monitoring, unlike the 1-lead ECG in the newer smartwatch models.

Within medical applications, electronic skin patches bring increased mobility to the patient over the 12-lead test. The first step from the 12-lead ECG is the Holter monitor, a portable, wired, device designed to be used over 24 – 48 hours. However, this device remains unwieldy and intrusive.

To increase patient comfort, companies have developed cardiac monitoring patches in the form of 1 integrated device over a flexible substrate. By removing the wires and decreasing device footprint and weight, electronic skin patches are more comfortable to wear, and can be used for longer monitoring periods, up to 30 days. This longevity is critical in detecting events for patients who do not experience them daily. The next step for devices will be to incorporate printed electronics to manufacture integrated electrodes and devices with even close-fitting designs for greater patient comfort.

Pitctures of various types of flexible electronics in healthcare: skin patches
Cardiac monitoring devices range from (left to right) the 12-lead ECG, Holter monitor, patch with snap fasteners, and patch with integrated electronics. // Source: IDTechEx research report, “Flexible Electronics in Healthcare 2020-2030

Overall, electronic skin patches for cardiac monitoring fill the gap between in-patient cardiac monitoring (accurate, safe, non-ambulatory, expensive), implantable cardiac monitors (accurate, less safe, ambulatory, expensive) and other wearable fitness devices (poor accuracy/no medical approval, safe, ambulatory, cheap). But the deployment of cardiac monitoring skin patches is not just limited to event monitoring or mobile cardiac telemetry. Outside of cardiac monitoring, electronic skin patches for monitoring of other diseases (e.g. respiratory), or general patient monitoring (in-patient, post-discharge, etc.) also contain cardiac monitoring capabilities.

To find out more about electronic skin patches, please refer to IDTechEx’s report, “Electronic Skin Patches 2020-2030“.

E-Textiles

Electronic textiles, or e-textiles for short, are products that involve both electronic and textile components in a single device. The idea is to combine the functionality from electronic components with the comfort, esthetics and ubiquity of textile products.

Smart clothing for sports used to be the major focus in the e-textiles industry – companies have made many attempts to develop mass-market products. Though e-textile companies may choose different strategies and technologies, the end products all have very similar functionalities such as tracking of activity, heart rate, respiratory rate, etc. There remains sporadic interest from apparel giants for sports applications, but many of the e-textile players have now shifted towards healthcare applications.

There is a close match between sports and medicine as the same vital signs are being detected and the same form factor (clothing) can be used. Within smart clothing, companies can design in 12- or even 15 leads for ECG readings, much more than the 2 – 3 offered by electronic skin patches. Moreover, smart clothing can be much more comfortable than electronic skin patches. The latter often causes discomfort through issues such as skin irritation. Despite the higher regulatory hurdle in healthcare vs sports, companies see the long-term benefit of e-textiles in healthcare. Smart clothing that is as comfortable as everyday clothing while still delivering medical-grade data will be key to automatic and continuous monitoring of patients going about their daily lives.

E-textiles are not just limited to clothing as a form factor, they may be incorporated into non-apparel textiles such as bed sheets, blankets, and even furniture. Regardless, the key for e-textile players today is validate their product through regulatory bodies such as the FDA, and to look into reimbursement for their products.

To find out more about electronic textiles, please refer to IDTechEx’s report, “E-textiles and Smart Clothing 2020-2030: Technologies, Markets and Players“.

What’s Next?

The COVID-19 pandemic has forced clinicians around the world to test out medical technologies to continue treating and monitoring their patients remotely. Though many physicians will eventually return to in-person practice, a fraction will continue utilizing telemedicine and remote patient monitoring technologies. Technologies such as electronic skin patches and e-textiles have much to offer to the healthcare system – remote patient monitoring has been shown to result in better outcomes, higher quality of care, and increased patient satisfaction. Healthcare systems will achieve cost savings through better management of patients and thus avoiding costly hospitalization and emergency room visits. While reimbursement of remote patient monitoring technologies is moving in the right direction, it will remain a major hurdle for companies entering this space.

You can read the full report here: Flexible Electronics in Healthcare 2020-2030, IDTechEx

Dr. Nadia Tsao
Dr. Nadia Tsao

Dr Nadia Tsao is a Principal Analyst at IDTechEx where she has been driving the company’s research in the life sciences. Her research spans a range of topics within healthcare, including digital health, bioelectronic medicine, and tissue engineering.

AI-based platform Hai brings COVID-related safety awareness to the public

To help face COVID-19 and ensure both health and well-being, the European service provider in product innovation Verhaert Masters in Innovation developed ‘Hai’: a digital demonstrator platform, based on user-centered Artificial Intelligence.

https://lh5.googleusercontent.com/J_vc4eMLoMacZn_7gu_ur_kW2I9_OEkEzcfzfxUCB-JdV6_GAogLB10MguQRkHhs9FtZjEQD7iwkhwJGugESBZF4vpSN15-KG9kTUrfXVCok-hOR0hSKxQotVXHNUzdeyvomX-29
New platform Hai for safer behavior

After 3 months of lockdown, strong regulations, and economic struggle, we’re carefully going back to our “normal” life. It’s a challenge to find the right balance between the well-being and health of the population, and a steady recovery after this critical period. 

To provide an answer to this challenging situation, Verhaert developed a demonstrator of a digital platform that uses AI-based Computer Vision to extract essential metrics from any room or area. The ‘Hai’ platform can bring COVID-related safety awareness to the public, allowing them to make informed decisions. It’s not a surveillance system, but a tool to empower people with relevant data about a specific space and to nudge them in a positive way towards a safer behavior. 

Components of the AI system

The digital platform consists of 3 components:

  1. Cameras to record a live feed of the people present in a particular area, the people entering and leaving the place.
  2. An edge AI system to process the footage on-the-fly. The system extracts the number of people, how many of them wear face masks, and measures the physical distance between individuals.
  3. Online dashboard to display this information in a friendly and educational way. 

Let’s say you work at your desk and you want to get something from the cafeteria. On the dashboard, you can see whether or not you should wait a while until fewer people are present at that place.

https://lh4.googleusercontent.com/HKdRn9P1SJ-HqE00Ow8y1MhqhjMBGZE45eMTYr_CbbrDXiG9_nXgG-A69xKQJlHMo9UBztFmxnvi8Wujzuczi3uSHXmOzPA7WolEFDlkMMEWYSP2yI5005V9StiR0flAtSjLgA44
Artificial Intelligence algorithms

Verhaert’s AILab trained the AI algorithms to calculate the number of people present in any space and detect how many of them are wearing face masks. What about the security and protection of private data? The cameras’ live feed never leaves the AI system. The edge AI device treats the information locally and only transfers processed and anonymous data to the dashboard. No human being sees, stores or transfers any images, safeguarding everyone’s identity and privacy.

Hai is about our health

The online platform is a tool to organize ourselves and our spaces, it doesn’t judge individuals. It allows us to access real-time information from anywhere to make informed consent whether or not to enter a room. Hai will display the total number of people in an area versus the maximum quantity allowed. Additionally, it creates a heat map of “close-encounters” (distance less than 1.5 meters) giving valuable information for cleaning, disinfecting, optimizing walking flows, and detecting bottlenecks.

Hai is about you

Hai will recognize in the near future  your gestures, so if you wave hello to the camera or raise a thumb, Hai will respond interactively. The digital platform has been created to demonstrate how AI technology can help us in managing our presence and common spaces better during COVID. Ensuring we all stay safe, not only at home.

– – – – – –

About VERHAERT

Since 1969, Verhaert Masters in Innovation has pioneered the field of product innovation. As a leading innovation group in integrated product development, Verhaert assists companies and entrepreneurs in the development and implementation of successful innovation processes. The group now has more than 200 employees with offices in Kruibeke, Gentbrugge, Kortrijk, Nivelles, Noordwijk, Utrecht and Aveiro.

For more information, please visit our website.

Contact
Nicky Sterck, Communicatie Verhaert Masters in Innovation
T +32 3 250 19 00 – M +32 491 24 98 64 – nicky.sterck@verhaert.com Jochem Grietens, Coordinator AILab at Verhaert Masters in Innovation
T +32 3 250 19 00 – jochem.grietens@verhaert.com

You can visit Verhaert at their website and follow them via their social media channels

This is a press release from the Verhaert Team

From core technology to marketable products: Comate

The step from break-through technology to a marketable product or machine is a challenging journey. After years of research and hard work, the proof of concept needs to be translated to a market ready product. Shifting focus from the core business to product development brings many risks and requires a complete change in competencies. However, making the right choices in the development process is crucial for the success of the product. And that’s where Comate comes in.

In order to come to innovative, break-through technology that challenges the state of the art, often years of research and great focus is needed. It’s an immense achievement on its own, to finally have the core technology on point and to have a proof of concept. But it doesn’t stop there. Eventually you want this technology to bring value. You want people to benefit from the blood, sweat and tears. Eventually this technology needs to be translated to a marketable product or machine.

Unfortunately, there’s a huge gap between a proof of concept setup and a market ready product that can be produced reliably a 100, 1.000, 10.000, 100.000 times. The expertise on the core technology that has been built up over the years doesn’t necessarily bring the skills to get a deep understanding of the market, all the stakeholders (including the end-users), the product roadmap or the know-how on prototyping, product design, materials, production techniques, suitable suppliers and so forth.

Universities, start-ups, SME’s and multinationals alike, face the choice of shifting their focus from their core technology to product development. This requires a change in competencies and the risk of falling behind on the core expertise. Universities want to keep the focus on research. For start-ups it’s not evident to suddenly hire engineers and product developers and put them on the payroll. SME’s and multinationals might lack the time or manpower to fully develop this technology and get it market ready. That is where Comate comes in.

Our expertise is in the process of developing marketable, high-tech, mechatronic, mechanical or electronic products and machines, starting from scratch, from a technological proof of concept, a prototype or from an existing device that needs to be made faster, more robust, waterproof or optimized for production. For this process to be successful, collaboration is key.

Making the right choices

Sharing expertise and co-creation is crucial in letting a company grow. An example of such a beautiful collaboration is the NGRAVE ZERO, the most secure hardware wallet on the planet. This is a Belgian co-development grown out of the idea of start-up NGRAVE and supported in development by Comate, imec and KU Leuven.

The frustration felt when being the victim of several cryptocurrency thefts and being unable to recover the funds is what brought the three founders together. They decided to develop a hardware device able to generate private keys and public keys of a blockchain wallet 100% offline, completely ‘air-gapped’ and therefore immune to online remote attacks. They had one shot at developing the hardware wallet, and decided to partner up with the experts of Comate to assist them with the engineering.

NGRAVE has launched a pre-order campaign on Indiegogo and has received no less than 1450% of their funding goal in one month. “Comate has proved to successfully combine creativity with technical excellence. Its design and engineering specialists took a lot of initiative in exploring material characteristics and technology applications to push product performance and ease of use. They contributed significantly to the engineering of the high-end NGRAVE ZERO crypt wallet, which guarantees robust operation and introduces a new benchmark in security,” shares Ruben Merre, CEO of NGRAVE.

Sharing expertise is key

“The combination between the client’s expertise as entrepreneur and our expertise to translate an idea into a high quality product is a good example of the success of co-creation,” says Wouter Foulon, founder of Comate. Whether it be the most secure hardware wallet on the planet, a medical device sold worldwide or an award-winning laser cleaning machine, sharing expertise is key in the development of innovative products.

Curious to know how we can assist your project? Get in touch via alexander.blockhuys@comate.be

This article was written by the Comate Team

Visit Comate at their website and follow them via their social media channels

ILaB Blows Industry Away with Award-Winning Audio Technology

This past May, the cloud-based communication giant Cision’s website published an article loudly proclaiming, “TCL 9 Series RAY•DANZ Soundbar with Dolby Atmos Receives iF DESIGN AWARD 2020 For Its Unique Design Featuring TCL’s Innovative Acoustic Reflector TechnologyOne.” The award-winning audio technology in that Soundbar was developed right here in the DSP Valley ecosystem by the young team of sound engineers at ILaB.

First collaboration, first prizes

The RAY•DANZ soundbar is the first product to use ILaB’s in-house developed audio technologies, the XBowFlector. As the Cision article announced, the soundbar won”best in show” at IFA 2019 (Berlin) and CES 2020 (Las Vegas) along with several other awards.

This XBowFlector IP is owned by the ILab, who has also started licensing it, in different executions, to various ODM. This makes it possible to create the best sound bars in their class at a very attractive price.

“When we demonstrate the immersiveness of our XBowFlector-based soundbars, the first reaction of our visitors is usually one of disbelief.  The single small form-factor soundbar generates sounds all around — generating leaves rustling in the far left-corner, birds fluttering at the far right top of the room, while the falling rain can be heard throughout the room.  More than once, a visitor will get up to check if there isn’t a multi-speaker setup hidden away behind the curtains… only to find an empty room except for our soundbar.”

Philip Loubele, CEO ILaB

 Award-Winning Audio Technology: XBowFlector

For a sound reproduction system, user expectations include a good, immersive sound with a wide sweet spot and good speech intelligibility. XBowFlector technology was developed in order to achieve this from a compact form factor (such as a soundbar).

This XBowFlector technology has a sophisticated arrangement of speakers and reflectors to produce a wide, natural and immersive sound experience with a single soundbar unit.

Operation principle
An internal view of the firing speakers and reflectors used in ILaB's award-winning audio technology

The basis of XBowFlector technology is a 3 channel speaker system: two side channels and one center channel, located between two reflectors.

Every channel is reproduced by 1 or more drivers (depending on implementation). In a compact execution, these combinations of drivers reproduce mid- and high frequencies. For bass, an external sub-woofer or internal woofer is required.

The side channels

The drivers of the two side channels are angled towards a well-calculated and defined reflector.  The reflector beams the sound from the drivers towards the sides under a well-defined angle. This angle is determined in such a way that in typical living room the sound is beamed to the walls and reflected towards the listener. The combination of the shape of the reflectors and the directivity pattern of the drivers makes sure that, while all frequencies are beamed, the higher frequencies are more focused to the sides. These high frequencies are thus reflected by the side walls.

Listeners perceive this high frequency as coming from a sound stage much larger than the size of the XBowFlector device. The mid frequencies—which are less beamed—makes this a homogeneous sound stage.

An additional benefit of the XBowFlector technology is the enlarged left and right channel separation due to the outward beaming.

Visual descriptions of how ILaB's award-winning audio side channels beam high frequency cues to create a homogenous soundstage

This high channel separation in combination with the reflected high frequencies cues contribute to a large natural sweepspot, in contrast to today’s mainstream virtualizers.

The center channel

The final cherry on the audio cake is a dedicated front firing loudspeaker system is used to reproduce the center channel, with accurate voice positioning and high voice intelligibility.

A depiction of how the center channel beams sound directly to the listener

About ILaB

ILaB is a young company of ex-Philips audio experts who are passionate about audio and strive to develop novel and innovative audio concepts.

Despite being a young company, we are a very experienced team with a long track record. In the past, we have earned our spurs as head of the Audio Innovation (R&D) lab at Philips and Gibson, of which we became independent in 2018. Today, with our audio expertise and facilities, we support well-known audio brands worldwide, and market our own innovations and IP – for sound bars, smart speakers, and headphones – under a licensing model.

Visit ILaB at their website and follow them on LinkedIn

* TCL is a leading brand in the global TV industry and wants to become a leading player in the audio market by using innovative audio technologies.  To do this, they’ve created TCL entertainment solutions. ILaB was selected as a launching party to make this possible.  

This article was written by the iLab Team and edited by Jane Judge

Deltaray keeps the momentum going

In June 2020, Flemish startup Deltaray launched their disruptive X-ray technology: 3D Xray equipment for 100% inspection of mission-critical mechanical parts. Since then, they’ve been making a splash.

Officially launched

From 15 to 17 June, they held an open house at Averana Hasselt, Deltaray’s automation partner, which was featured not only in the Gazet van Antwerpen but also garnered visual attention from Flemish television channel Kanaal Z.

Making waves

In the midst of the Covid-19 crisis, the Deltaray team has seen their hard work pay off with two recent accolades:

Belgian finalist for the TAFTIE e-pitch 16th of June : Deltaray
  • Just last week, the Tech Tour Photonics Programme announced Deltaray had been selected for their 2020 edition
    • Designed by entrepreneurs for startups developing tech solutions in the photonics field, the program includes a series of online sessions and a 2-day live event that would take place in September 2020 (date will be announced soon) in Eindhoven, The Netherlands.

As befits an exciting startup, the Deltaray team is actively looking ahead. We’ll be watching for new developments – stay tuned!

You can visit Deltaray’s website and follow them on LinkedIn