Verhaert : AI assisted robotic spinal surgery

digital rendering of a robotic arm scanning a patient lying on a surgical table

DSP member Verhaert Masters in Innovation has received a research grant from VLAIO to develop state-of-the-art artificial intelligence (AI-)driven robot technology.

In the research project, Verhaert will develop a robotic platform for spinal surgery which uses algorithms developed by Deep Learning (AI). The developed algorithms will transform high resolution preoperative 3D images, like CT scans and MRIs, to high resolution images of the patient in his or her new physical laying position during surgery. The novel part of the proposed procedure is the significant reduction of the use of cancerogenous ionizing x-ray beams during surgery, like CT-scans, while still being able to perform sub-millimeter surgery and catheter tracking.

3-step surgical procedure
Defining the concept
The physical laying position of the patient changes before, at the start and during surgery, which has an impact on the physical position and form of the spinal cord. All these changes in position need to be taken into account in order to perform sub-mm surgery.

  • Before: the patient is laying on her back for high resolution CT/MRI scans.
  • At the start: the patient is laying on her stomach.
  • During: the patient is laying on her stomach and slightly moves because of breathing, heartbeat and the impact of the surgery itself.
Overview of the patient’s physical position before, at the start, and during surgery © VERHAERT

 Before surgery

A high resolution sub millimeter 3D image is taken from the patient several days before surgery. This is done either by a CT-scan or MRI. Typically, the scan is taken while the patient is laying on his/her back. Based on the image the surgery is planned and a trajectory is calculated in order to reach the desired location in the spinal cord.

Before surgery the patient is lying on her back for high resolution CT/MRI scans © VERHAERT

At the start of surgery
At this stage the patient will be laying on his/her stomach. Markers are placed on the patient which are detected by a set of Infra-Red cameras in order to create a 3D model of the patients’ physical position on the operating table. In this new position, a low dose low resolution (supra-millimeter) 2D image is take of the patients’ spine. The 2D image is taken with a C-arm 2D fluoroscopic scanner.

At the start of the surgery the patient is laying on her stomach © VERHAERT

The 2D image and the external marker localizations are used to transform the high resolution pre-surgery 3D image into a newly reconstructed high resolution 3D image of the spine in its new position and form. At this point, the surgeon and its team has a 3D image of the patients’ anatomy in combination with an external reference frame.

This article was written by the Verheart Team

You can visit Verhaert at their website and follow them at their social media accounts:

Sfella, the Smart Flush solution, is ready to enter the Legionella prevention market

In the Netherlands, 300 to 400 people are infected per year with the legionella bacteria (Legionnaires’ disease or Pontiac fever), a number that is rising each year. Victims of the bacteria suffer for a long period, from several months up to more than a year. Between 5 and 10% of cases are lethal.

Legionella infections mostly occur through people breathing in legionella-contaminated aerosols. Aerosols are small droplets of water that are generated, for example, when showering. For this reason, public showers like the ones in sports centres, swimming halls, and saunas, as well as truck stops and camp sites, need to be flushed regularly to prevent legionella growing in the water pipes. The required flushing is often done manually or semi-automated, which is very time consuming, prone to human errors, and labor intensive. Especially when one takes into account the legal obligations to report data like date, time, water temperature, and flush duration per shower.

The risk of legionella contamination has increased in the current Covid-19 crisis with the (temporary) closure of facilities. Showers are not used by clients and facility engineers who have to stay home and are not allowed to come to their facilities for the requisite flushing.

Sfella is the Smart Flush solution by Mioto* that addresses all of the above issues. Sfella is a user-friendly, reliable and easy-to-install solution for legionella prevention. The system is modular, for use within environments with multiple showers. It assures flushing the shower(s) happens after an operator-defined time period. The system reports the important flush data like date, time, duration, and water temperature. This reporting and control of the showers happens locally or remote via a dedicated gateway.

Sfella is powered by the mesh network MyriaNed. It is an infrastructure of nodes that connect directly, dynamically, and non-hierarchically. This allows easy configuration and scalability. Data transfer to and from the shower units (represented by a node) is wireless and bi-directional. Therefore, settings can be changed remotely, while the report with flush-related data can be received remotely in your email inbox. MyriaNed can be configured to use either 868MHz or 2.4GHz. This allows for the optimal fit in each local environment in terms of coverage and energy usage.

In February 2020, just before the first Covid-19 wave struck the Netherlands, van Mierlo Ingenieursbureau B.V. started a pilot program with Sfella on 15 showers in a care institute. The unforeseen Covid-19 crisis forced the care institute to close its sports facilities for several months, a perfect period to test the installed Sfella system. It appears the automatic flushing happened every 72 hours as programmed. Once the facilities opened again in early summer, final confirmation arrived: examinations of the water samples taken showed no legionella contamination in the related water pipes. This offered the most convincing evidence that Sfella delivered.

van Mierlo Ingenieursbureau is now to actively approaching the Dutch market and discussing with sales and distribution partners, as well as technology partners, to broaden the Sfella roadmap. If you are interested in partnering for sales and distribution, including outside the Netherlands, please contact us.

A video about Sfella is available at our website.

For further information, please reach out to info@vanmierlo.com

* Mioto is a brand of van Mierlo Ingenieursbureau B.V. in Eindhoven the Netherlands

Fulco Verheul

Responsible for marketing, sales, business development, product management and product development activities at van Mierlo Ingenieursbureau B.V.

World Class Research Meets the Market, Thanks to Comate

In July 2020, we published an article written by the team at Comate Engineering and Design explaining how they help ideas go “from core technology to marketable products.” We’re happy to bring you a new piece of their success story: CellSine.

CellSine is a revolutionary new technology for early stage drug testing. It could easily mean medications brought to patients faster and with less testing on animals. A win-win!

The technology behind CellSine, based on electrochemical impedance spectroscopy (EIS), was developed as part of a doctoral research project at the University of Leuven (KU Leuven) and the University of Brussels (VUB), resulting in a proof of concept. As anyone who’s brought a concept to market knows, though, this is but a step in a much longer process.

That’s where Comate came in. As they put it themselves, “CellSine relied on the expertise of Comate’s engineers and designers for the technical development, to translate the PoC into a market-ready product.”

A visual representations of the process Comate uses to take a proof of concept to a marketable product

Thanks to Comate’s expertise in taking a proof of concept to market, CellSine has launched a truly innovative device. Their ambitions run high, including integrating AI to their data analysis and boosting personalized medicine.

Read the whole story at Comate’s website.

Sky’s the Limit for Flemish Startup Helpilepsy

Helpilepsy app visualization for patient care

At DSP Valley, we love to see our member organizations succeed. We’re happy for them, of course! We’re also thrilled to see our digitization ecosystem thriving and rewarding innovation. That’s why we’re delighted to share exciting news about one of our startup members, Helpilepsy.

Managing Epilepsy with Digital Technology and Personalized Medicine

Launched in 2017, Helpilepsy is a platform for both patients and their care team to monitor epileptic seizures, side effects, medication and other parameters. Billed as “a complete digital solution for people with epilepsy and neurologists,” the software allows for more personalized approaches to Epilepsy in patients. Currently, patients and doctors in 5 countries (Belgium, Luxembourg, France, Germany, and Hungary) use Helpilepsy, with more expansion on the horizon.

It works like any app: a patient can download it on their app platform of choice (the Apple store, Google Play, etc) and begin using it. Physicians and healthcare workers can track and monitor patient inputs through beautifully visualized web dashboards.

Moving Forward

This summer, the team announced an exciting development: official ISO13485:2016 certification, with many thanks to their Quality and Regulatory Lead Amandine Berton. This may not sound like a huge deal, but it’s a big achievement, especially for a small startup team.

ISO certification pertains to a manufacturer’s quality management system, which in turn involves their documentation and processes. All new releases need to be fully documented, the team must be able to show clinical proof of their software’s effectiveness, new employees must go through a welcome checklist, and more. These must comply with ISO13485 in order to meet European regulations. EU regulations govern myriad elements, including customer feedback, logistics, development and more — all before a product can be sold with the CE mark within the EU single market.

The CE symbol, which we probably all recognize but never really think about, indicates “that products sold in the EEA have been assessed to meet high safety, health, and environmental protection requirements. When you buy a new phone, a teddy bear, or a TV within the EEA, you can find the CE mark on them. CE marking also supports fair competition by holding all companies accountable to the same rules.”1 Crucially, it is up to manufacturers to make sure their products adhere to CE standards and EU regulations.

Recently, the rules regarding medical devices and medical technology changed. From now on, medical software including apps like Helpilepsy and the team’s newest product, Migraine Manager, fall into a higher classification. This means that they are subject to much stricter oversight. Affected class I medical software companies have been given until 2024 to fully conform to the new regulations.

The fact that the Helpilepsy team has been able to secure ISO certification ahead of the deadline is a testament to their talent and dedication.

Top Tier

While ISO certification, and subsequent CE marking, is administratively necessary, it brings with it tangible benefits. For one thing, the team is ahead of the game. The biggest part of their work to fully comply with new regulations is complete. They can once again focus on their core business!

Moreover, the processes necessary for the certification lend further credibility to Helpilepsy’s technology. It’s a strong selling point that they can offer to potential patients, doctors, and business partners.

What’s more, as co-founder Ludovic Ampe explains, ISO certification will hopefully be a catalyst for further expansion. Since the CE mark is a European-widely recognized standard, achieving it should open up more international markets.

Last but not least, at the end of August, Helpilepsy was named one of the top 10 health tech startups in the Benelux region. A great achievement — Congratulations!

Be sure to keep your eye on this up-and-coming organization! We’re willing to bet they have even more exciting developments in store 😊

You can visit Helpilepsy at their website and follow them via their social media channels:

Smart Cities Vlaanderen: More powerful than ever

Smart Cities Vlaanderen logo

In July, Citylab fully integrated its work for the Innovative Business Network (IBN) Smart Cities Vlaanderen with partner DSP Valley. “After more than a year and a half of successful collaboration with DSP Valley, it is time for this step,” says Citylab director Marc Schepers. “By bringing our business cluster fully under one roof, we will become more effective and create room for further development of Smart Cities Vlaanderen!”   

DSP Valley and Citylab are the driving forces behind the IBN Smart Cities Vlaanderen, which was started more than a year and a half ago with the support of various big names in the tech world. Although still at an early stage as an organization, the cluster has had a promising start, successfully bridging the gap between business and government. Their strength has been converting Smart Cities issues into concrete business cases for companies.

Dieter Therssen (left), CEO of DSP Valley, and Marc Schepers (right), director of Citylab, signing the merger official agreement regarding Smart Cities Vlaanderen.
Dieter Therssen (left), CEO of DSP Valley, and Marc Schepers (right), director of Citylab, signing the official merger agreement.

The two organizations are convinced that they are coming together at the right moment. Schepers declared, “It is now time to connect even more and to continue our cooperation with DSP Valley. That is why we decided to fully shift our co- promotorship to DSP Valley.” 

From his perspective as CEO of DSP Valley, Dieter Therssen emphasizes the need for an encompassing structure. “In Flanders, several initiatives have emerged in the field of smart cities in recent years , but there is not yet an overarching approach across the region. At the same time, the demand from local governments for smart city solutions is increasing exponentially,” he states. 

CEO of Living Tomorrow and president of Smart Cities Vlaanderen, Joachim De Vos agrees that the time for joining forces is ripe as the movement for smart cities gains momentum. This merger between DSP Valley and City Labs is the first step toward an even stronger Smart Cities Vlaanderen consortium.

Flanders Innovation and Entrepreneurship (VLAIO), which financially supports the consortium through its subsidies for IBNs, is also on board. Asked for comment, a spokesperson confirmed, “This evolution makes the position of Smart Cities Vlaanderen more powerful and stable and allows them to support companies even better in the smart cities domain. It will enable the cluster to actively contribute to developing Flanders into a smart region.”

 The integration between Citylab and DSP Valley “enables us to accelerate our role as a matchmaker between companies and local authorities, building business consortia and creating a digital platform in the quadruple helix,” says Peter Vandeurzen, Cluster Manager for Smart Cities Vlaanderen. DSP Valley will further expand and strengthen the cluster from its office at the Corda Campus in Hasselt.

A bundled structure can also be the starting point for jumping from Flanders to Europe in the context of digitization. By coordinating smart cities initiatives, the desired critical mass and strength can be achieved to make Flanders a leading smart region in Europe.

All information about the Smart Cities Vlaanderen community and how to participate can be found on their website.

Contact
info@smartcities.vlaanderen
www.smartcities.vlaanderen

Smart Cities Vlaanderen Cluster
The cluster was founded by a number of steering group members and co-financed by VLAIO. The founding steering committee members are: Living Tomorrow with Joachim De Vos, chairman of the steering group, Nokia, Cronos Group, MyCsN, Tractebel Engie, Mediahuis, Hydroscan, Niko, and AllThingsTalk.

Together for strong, ambitious innovation
More starters, more stayers, more growers: that’s what we aim for! The Innovation & Entrepreneurship Agency and the Innovative Business Networks want to facilitate cooperation between companies, knowledge institutions and governments. Smart Cities Vlaanderen is one of these innovative business networks. Discover the others at the website. #growingstrong #sterkgroeien   

AI-based platform Hai brings COVID-related safety awareness to the public

To help face COVID-19 and ensure both health and well-being, the European service provider in product innovation Verhaert Masters in Innovation developed ‘Hai’: a digital demonstrator platform, based on user-centered Artificial Intelligence.

https://lh5.googleusercontent.com/J_vc4eMLoMacZn_7gu_ur_kW2I9_OEkEzcfzfxUCB-JdV6_GAogLB10MguQRkHhs9FtZjEQD7iwkhwJGugESBZF4vpSN15-KG9kTUrfXVCok-hOR0hSKxQotVXHNUzdeyvomX-29
New platform Hai for safer behavior

After 3 months of lockdown, strong regulations, and economic struggle, we’re carefully going back to our “normal” life. It’s a challenge to find the right balance between the well-being and health of the population, and a steady recovery after this critical period. 

To provide an answer to this challenging situation, Verhaert developed a demonstrator of a digital platform that uses AI-based Computer Vision to extract essential metrics from any room or area. The ‘Hai’ platform can bring COVID-related safety awareness to the public, allowing them to make informed decisions. It’s not a surveillance system, but a tool to empower people with relevant data about a specific space and to nudge them in a positive way towards a safer behavior. 

Components of the AI system

The digital platform consists of 3 components:

  1. Cameras to record a live feed of the people present in a particular area, the people entering and leaving the place.
  2. An edge AI system to process the footage on-the-fly. The system extracts the number of people, how many of them wear face masks, and measures the physical distance between individuals.
  3. Online dashboard to display this information in a friendly and educational way. 

Let’s say you work at your desk and you want to get something from the cafeteria. On the dashboard, you can see whether or not you should wait a while until fewer people are present at that place.

https://lh4.googleusercontent.com/HKdRn9P1SJ-HqE00Ow8y1MhqhjMBGZE45eMTYr_CbbrDXiG9_nXgG-A69xKQJlHMo9UBztFmxnvi8Wujzuczi3uSHXmOzPA7WolEFDlkMMEWYSP2yI5005V9StiR0flAtSjLgA44
Artificial Intelligence algorithms

Verhaert’s AILab trained the AI algorithms to calculate the number of people present in any space and detect how many of them are wearing face masks. What about the security and protection of private data? The cameras’ live feed never leaves the AI system. The edge AI device treats the information locally and only transfers processed and anonymous data to the dashboard. No human being sees, stores or transfers any images, safeguarding everyone’s identity and privacy.

Hai is about our health

The online platform is a tool to organize ourselves and our spaces, it doesn’t judge individuals. It allows us to access real-time information from anywhere to make informed consent whether or not to enter a room. Hai will display the total number of people in an area versus the maximum quantity allowed. Additionally, it creates a heat map of “close-encounters” (distance less than 1.5 meters) giving valuable information for cleaning, disinfecting, optimizing walking flows, and detecting bottlenecks.

Hai is about you

Hai will recognize in the near future  your gestures, so if you wave hello to the camera or raise a thumb, Hai will respond interactively. The digital platform has been created to demonstrate how AI technology can help us in managing our presence and common spaces better during COVID. Ensuring we all stay safe, not only at home.

– – – – – –

About VERHAERT

Since 1969, Verhaert Masters in Innovation has pioneered the field of product innovation. As a leading innovation group in integrated product development, Verhaert assists companies and entrepreneurs in the development and implementation of successful innovation processes. The group now has more than 200 employees with offices in Kruibeke, Gentbrugge, Kortrijk, Nivelles, Noordwijk, Utrecht and Aveiro.

For more information, please visit our website.

Contact
Nicky Sterck, Communicatie Verhaert Masters in Innovation
T +32 3 250 19 00 – M +32 491 24 98 64 – nicky.sterck@verhaert.com Jochem Grietens, Coordinator AILab at Verhaert Masters in Innovation
T +32 3 250 19 00 – jochem.grietens@verhaert.com

You can visit Verhaert at their website and follow them via their social media channels

This is a press release from the Verhaert Team

From core technology to marketable products: Comate

The step from break-through technology to a marketable product or machine is a challenging journey. After years of research and hard work, the proof of concept needs to be translated to a market ready product. Shifting focus from the core business to product development brings many risks and requires a complete change in competencies. However, making the right choices in the development process is crucial for the success of the product. And that’s where Comate comes in.

In order to come to innovative, break-through technology that challenges the state of the art, often years of research and great focus is needed. It’s an immense achievement on its own, to finally have the core technology on point and to have a proof of concept. But it doesn’t stop there. Eventually you want this technology to bring value. You want people to benefit from the blood, sweat and tears. Eventually this technology needs to be translated to a marketable product or machine.

Unfortunately, there’s a huge gap between a proof of concept setup and a market ready product that can be produced reliably a 100, 1.000, 10.000, 100.000 times. The expertise on the core technology that has been built up over the years doesn’t necessarily bring the skills to get a deep understanding of the market, all the stakeholders (including the end-users), the product roadmap or the know-how on prototyping, product design, materials, production techniques, suitable suppliers and so forth.

Universities, start-ups, SME’s and multinationals alike, face the choice of shifting their focus from their core technology to product development. This requires a change in competencies and the risk of falling behind on the core expertise. Universities want to keep the focus on research. For start-ups it’s not evident to suddenly hire engineers and product developers and put them on the payroll. SME’s and multinationals might lack the time or manpower to fully develop this technology and get it market ready. That is where Comate comes in.

Our expertise is in the process of developing marketable, high-tech, mechatronic, mechanical or electronic products and machines, starting from scratch, from a technological proof of concept, a prototype or from an existing device that needs to be made faster, more robust, waterproof or optimized for production. For this process to be successful, collaboration is key.

Making the right choices

Sharing expertise and co-creation is crucial in letting a company grow. An example of such a beautiful collaboration is the NGRAVE ZERO, the most secure hardware wallet on the planet. This is a Belgian co-development grown out of the idea of start-up NGRAVE and supported in development by Comate, imec and KU Leuven.

The frustration felt when being the victim of several cryptocurrency thefts and being unable to recover the funds is what brought the three founders together. They decided to develop a hardware device able to generate private keys and public keys of a blockchain wallet 100% offline, completely ‘air-gapped’ and therefore immune to online remote attacks. They had one shot at developing the hardware wallet, and decided to partner up with the experts of Comate to assist them with the engineering.

NGRAVE has launched a pre-order campaign on Indiegogo and has received no less than 1450% of their funding goal in one month. “Comate has proved to successfully combine creativity with technical excellence. Its design and engineering specialists took a lot of initiative in exploring material characteristics and technology applications to push product performance and ease of use. They contributed significantly to the engineering of the high-end NGRAVE ZERO crypt wallet, which guarantees robust operation and introduces a new benchmark in security,” shares Ruben Merre, CEO of NGRAVE.

Sharing expertise is key

“The combination between the client’s expertise as entrepreneur and our expertise to translate an idea into a high quality product is a good example of the success of co-creation,” says Wouter Foulon, founder of Comate. Whether it be the most secure hardware wallet on the planet, a medical device sold worldwide or an award-winning laser cleaning machine, sharing expertise is key in the development of innovative products.

Curious to know how we can assist your project? Get in touch via alexander.blockhuys@comate.be

This article was written by the Comate Team

Visit Comate at their website and follow them via their social media channels

ILaB Blows Industry Away with Award-Winning Audio Technology

This past May, the cloud-based communication giant Cision’s website published an article loudly proclaiming, “TCL 9 Series RAY•DANZ Soundbar with Dolby Atmos Receives iF DESIGN AWARD 2020 For Its Unique Design Featuring TCL’s Innovative Acoustic Reflector TechnologyOne.” The award-winning audio technology in that Soundbar was developed right here in the DSP Valley ecosystem by the young team of sound engineers at ILaB.

First collaboration, first prizes

The RAY•DANZ soundbar is the first product to use ILaB’s in-house developed audio technologies, the XBowFlector. As the Cision article announced, the soundbar won”best in show” at IFA 2019 (Berlin) and CES 2020 (Las Vegas) along with several other awards.

This XBowFlector IP is owned by the ILab, who has also started licensing it, in different executions, to various ODM. This makes it possible to create the best sound bars in their class at a very attractive price.

“When we demonstrate the immersiveness of our XBowFlector-based soundbars, the first reaction of our visitors is usually one of disbelief.  The single small form-factor soundbar generates sounds all around — generating leaves rustling in the far left-corner, birds fluttering at the far right top of the room, while the falling rain can be heard throughout the room.  More than once, a visitor will get up to check if there isn’t a multi-speaker setup hidden away behind the curtains… only to find an empty room except for our soundbar.”

Philip Loubele, CEO ILaB

 Award-Winning Audio Technology: XBowFlector

For a sound reproduction system, user expectations include a good, immersive sound with a wide sweet spot and good speech intelligibility. XBowFlector technology was developed in order to achieve this from a compact form factor (such as a soundbar).

This XBowFlector technology has a sophisticated arrangement of speakers and reflectors to produce a wide, natural and immersive sound experience with a single soundbar unit.

Operation principle
An internal view of the firing speakers and reflectors used in ILaB's award-winning audio technology

The basis of XBowFlector technology is a 3 channel speaker system: two side channels and one center channel, located between two reflectors.

Every channel is reproduced by 1 or more drivers (depending on implementation). In a compact execution, these combinations of drivers reproduce mid- and high frequencies. For bass, an external sub-woofer or internal woofer is required.

The side channels

The drivers of the two side channels are angled towards a well-calculated and defined reflector.  The reflector beams the sound from the drivers towards the sides under a well-defined angle. This angle is determined in such a way that in typical living room the sound is beamed to the walls and reflected towards the listener. The combination of the shape of the reflectors and the directivity pattern of the drivers makes sure that, while all frequencies are beamed, the higher frequencies are more focused to the sides. These high frequencies are thus reflected by the side walls.

Listeners perceive this high frequency as coming from a sound stage much larger than the size of the XBowFlector device. The mid frequencies—which are less beamed—makes this a homogeneous sound stage.

An additional benefit of the XBowFlector technology is the enlarged left and right channel separation due to the outward beaming.

Visual descriptions of how ILaB's award-winning audio side channels beam high frequency cues to create a homogenous soundstage

This high channel separation in combination with the reflected high frequencies cues contribute to a large natural sweepspot, in contrast to today’s mainstream virtualizers.

The center channel

The final cherry on the audio cake is a dedicated front firing loudspeaker system is used to reproduce the center channel, with accurate voice positioning and high voice intelligibility.

A depiction of how the center channel beams sound directly to the listener

About ILaB

ILaB is a young company of ex-Philips audio experts who are passionate about audio and strive to develop novel and innovative audio concepts.

Despite being a young company, we are a very experienced team with a long track record. In the past, we have earned our spurs as head of the Audio Innovation (R&D) lab at Philips and Gibson, of which we became independent in 2018. Today, with our audio expertise and facilities, we support well-known audio brands worldwide, and market our own innovations and IP – for sound bars, smart speakers, and headphones – under a licensing model.

Visit ILaB at their website and follow them on LinkedIn

* TCL is a leading brand in the global TV industry and wants to become a leading player in the audio market by using innovative audio technologies.  To do this, they’ve created TCL entertainment solutions. ILaB was selected as a launching party to make this possible.  

This article was written by the iLab Team and edited by Jane Judge

Lung Diagnostics Startup ArtiQ Keeps Innovating During Pandemic

Leuven-based startup ArtiQ has had plenty to keep them busy these last months. Using artificial intelligence-based software, ArtiQ.PFT, they help doctors interpret pulmonary function tests and improve the diagnostic environment for respiratory diseases. As the covid-19 pandemic hit, their lung diagnostic innovation has found fertile ground.

lung diagnostic testing in a hospital

Lung diagnostics innovation in the time of Corona

Recently, ArtiQ CEO and co-founder Marko Topalovic wrote about how he and his team have been tackling the Covid-19 pandemic for Eureca (European Respiratory Cluster Antwerp). In his article, Marko explains how the pandemic shifted ArtiQ’s focus somewhat.

“Due to the COVID-19 pandemic, all lung function tests were shut down during a certain time. Now hospitals are restarting their practice and lung function tests can be used to monitor the progression of the disease,” he writes.

After requests from doctors inundated by pandemic patients, Marko and the team decided to offer their software free of licensing fees until September. As such, their diagnostic AI technology is increasingly being used to follow-up on patients, in addition to its original intention to help with initial diagnoses.

ArtiQ.PFT, is already used in the interpretation of more than 50.000 lung function tests in UZ Leuven, CHU Saint-Pierre, OLV Aalst and ZOL Genk.

Marko Topalovic

Following Patient Roadmaps

As Covid-19 patients leave hospitals, they’re increasingly visiting their primary care doctors for check ups. This means that non-hospital healthcare providers are in more need of lung care technology. In response, ArtiQ is looking to move out of hospitals, too, and is actively working on bringing their technological support to GPs.

“ArtiQ plans to integrate AI-expertise with spirometry to support GPs in identifying lung diseases and improving their decision making,” Marko states. “In the future, such tool may play an important role in the follow-up of COVID-19 patients on the GP level.”

A stethoscope lying on a cloth

ArtiQ in drug development

Given the success they’re seeing in patient follow-up, the team at ArtiQ is also looking into expanding their technologies into pharmaceuticals and drug development. They’re specifically looking to bring their technology to clinical trials and improving quality control of lung function measurements.

As Marko explains, “In respiratory drug development, lung function is the primary clinical tool to assess the efficiency of treatment. Therefore, it is critical for pharmaceutical companies and the success of their clinical trials that the results of these tests are consistent and reliable.” ArtiQ’s new AI-based software can do just this.

Using AI to improve healthcare

Ultimately, it’s the AI ArtiQ integrates and innovates that’s making the big difference. The ArtiQ team is profoundly aware of the changes AI is bringing to the healthcare system. As they see it, using artificial intelligence in healthcare can provide tangible support for healthcare workers. Three top examples, elaborated in a recent blog post. include:

  1. Providing consistent decision support for healthcare providers, especially where large amounts of data are involved
  2. Reducing the administrative burden so that healthcare professionals spend less time on paperwork
  3. Creating more time to focus on human interaction. The preceding two will allow health professionals to have more time with patients and for meaningful collaborations with colleagues

You can visit ArtiQ at their website and follow them via their social media channels

Deltaray keeps the momentum going

In June 2020, Flemish startup Deltaray launched their disruptive X-ray technology: 3D Xray equipment for 100% inspection of mission-critical mechanical parts. Since then, they’ve been making a splash.

Officially launched

From 15 to 17 June, they held an open house at Averana Hasselt, Deltaray’s automation partner, which was featured not only in the Gazet van Antwerpen but also garnered visual attention from Flemish television channel Kanaal Z.

Making waves

In the midst of the Covid-19 crisis, the Deltaray team has seen their hard work pay off with two recent accolades:

Belgian finalist for the TAFTIE e-pitch 16th of June : Deltaray
  • Just last week, the Tech Tour Photonics Programme announced Deltaray had been selected for their 2020 edition
    • Designed by entrepreneurs for startups developing tech solutions in the photonics field, the program includes a series of online sessions and a 2-day live event that would take place in September 2020 (date will be announced soon) in Eindhoven, The Netherlands.

As befits an exciting startup, the Deltaray team is actively looking ahead. We’ll be watching for new developments – stay tuned!

You can visit Deltaray’s website and follow them on LinkedIn