IDTechEx Predicts Flexible Electronics will own a Major Slice of the Healthcare Market by 2030

smart Health Patches 2
Athlete wearing the smart Health Patch.

DSP Valley active in Flexible Electronics and Healthcare

Healthcare is a major market for both established and emerging technologies. Flexible Electronics is a growing field gaining more and more momentum. Flexible electronics in healthcare is a combination with a bright future.

As our Newsletter readers and members will know, DSP Valley is currently active in three Flexible (and Wearable) Electronics projects: Flexlines (focused on creating a one-stop-shop for flexible electronics), SmartX (specifically geared towards flexible electronics in textiles), and SmartEEs (aimed at helping innovative companies digitize). This is by design: flexible (and wearable) electronics have high potential. This is in part because of their many possible applications.

One of DSP Valley’s core programs in Smart Health. We’re co-founders of the IBN flanders.health. This year, we’ve worked hard alongside our partners Flanders.bio and MedTech Flanders in getting a Spearhead Cluster for Health Tech off the ground in Flanders.

Collaborative Digital Business Breeding

Our work in the health technology and flexible electronics sectors is essential to our central mission: breeding digital business through collaborative business development. The European Flexible and Wearable Electronics projects and the flanders.health IBN and coming Spearhead Cluster are concrete examples of creating collaborative business opportunities. These go beyond single company, or even single application, vision and seek to build and support strong ecosystems that will be economically sustainable.

This is why we were delighted to read IDTechEx’s analysis. The abstract of their report “Flexible Electronics in Healthcare 2020-2030” confirms DSP Valley’s perceptions. It reinforces our resolve to continue to work hard to bring Flexible Electronics and Health Tech together, in our region and beyond.

Click here to read the summary sent to us by IDTechEx. Please note that we have nothing to do with their research. This is neither an endorsement nor a promotion.

Join us to find out more

Want to find out more about our Flexible (and Wearable) Electronics projects? Check out the upcoming FREE events – click the titles for more information and to register:

22
October2020
Flexible Electronics Webinar Flexlines unites different players providing access to new Flexible Electronics technologies through one-stop-shop concepts in order to accelerate the design, development, and uptake of advanced applications in Flexible & Wearable Electronics. 
14:00 CETOnline
12
November2020
SmartEEs information Session with TNOThe SmartEEs Project is funded by Horizon 2020 and is aimed at supporting SMEs and Mid-caps in integrating flexible and wearable electronics into novel (series of) products.

In this webinar, Corne Rentrop (TNO) and Dieter Therssen (DSP Valley) will explain all about the project and what the benefits are for companies and service providers thinking about applying.
14:00 CETOnline
17
November2020
SmartEEs Information Session with imecThe SmartEEs Project is funded by Horizon 2020 and is aimed at supporting SMEs and Mid-caps in integrating flexible and wearable electronics into novel (series of) products.

In this webinar, Dieter Therssen (DSP Valley), Maarten Cauwe (imec), and Frederick Bossuyt (imec) will explain all about the project and what the benefits are for companies and service providers thinking about applying.
11:00 CETOnline

IDTechEx Report Summary of “Flexible Electronics in Healthcare 2020-2030”

IDTechEx sent this report summary to DSP Valley. You can read more about DSP Valley’s activities regarding Flexible Electronics and Smart Healthcare here.

NB: We are sharing this summary as a service to our readers and members. We are in no way affiliated with IDTechEx.

IDTechEx Report Summary

“The market size for flexible electronics in healthcare will exceed $8.3 billion by 2030”

Dr Nadia Tsao, Principal Analyst at IDTechEx, recently published the below article on the topic of flexible electronics within the healthcare industry.

Flexible Electronics in Wearable Cardiac Monitoring Technologies

In today’s digital age, focus on digital health and the quantified self have led to the rapid rise of heart rate monitoring technologies through wearables such as fitness trackers and smartwatches. Such devices have already proven their ability in detecting hidden heart conditions such as tachycardia and atrial fibrillation in seemingly healthy people. However, the majority of wrist-based devices currently serve only as an advance warning, they are not approved by the FDA for use as medical devices. Thus, cardiologists still need to use alternative technologies for their diagnostic and monitoring needs.

This is where flexible electronics comes in. Cardiac monitoring requires devices to make close contact with the skin, making devices that integrate flexible and even stretchable electronics ideal due to their ability to conform to the skin, the potential for a low profile, and overall patient comfort. IDTechEx forecasts that flexible electronics in cardiac monitoring, deployed in electronic skin patches and electronic textiles, will be a $2 billion market in the year 2030.

IDTechEx have been reporting on flexible electronics for the past decade and have recently published “Flexible Electronics in Healthcare 2020-2030”. In this article, IDTechEx describe how electronic skin patches and electronic textiles are used in cardiac monitoring. To find out more about other technologies for monitoring cardiovascular health, please refer to the IDTechEx report, “Cardiovascular Disease 2020-2030: Trends, Technologies & Outlook“.

Electronic Skin Patches

Electronic skin patches are wearable devices that contain electrical components which are attached to the skin, typically using an adhesive.

In cardiac monitoring, electronic skin patches present an interesting balance between the medical standard, which is a 12-lead ECG test, and consumer electronics such as smartwatches and fitness trackers. While electronic skin patches offer less data than can be obtained through a 12-lead ECG, they present more useful and accurate information than the optical technology used in smartwatches and fitness trackers, and offer continuous monitoring, unlike the 1-lead ECG in the newer smartwatch models.

Within medical applications, electronic skin patches bring increased mobility to the patient over the 12-lead test. The first step from the 12-lead ECG is the Holter monitor, a portable, wired, device designed to be used over 24 – 48 hours. However, this device remains unwieldy and intrusive.

To increase patient comfort, companies have developed cardiac monitoring patches in the form of 1 integrated device over a flexible substrate. By removing the wires and decreasing device footprint and weight, electronic skin patches are more comfortable to wear, and can be used for longer monitoring periods, up to 30 days. This longevity is critical in detecting events for patients who do not experience them daily. The next step for devices will be to incorporate printed electronics to manufacture integrated electrodes and devices with even close-fitting designs for greater patient comfort.

Pitctures of various types of flexible electronics in healthcare: skin patches
Cardiac monitoring devices range from (left to right) the 12-lead ECG, Holter monitor, patch with snap fasteners, and patch with integrated electronics. // Source: IDTechEx research report, “Flexible Electronics in Healthcare 2020-2030

Overall, electronic skin patches for cardiac monitoring fill the gap between in-patient cardiac monitoring (accurate, safe, non-ambulatory, expensive), implantable cardiac monitors (accurate, less safe, ambulatory, expensive) and other wearable fitness devices (poor accuracy/no medical approval, safe, ambulatory, cheap). But the deployment of cardiac monitoring skin patches is not just limited to event monitoring or mobile cardiac telemetry. Outside of cardiac monitoring, electronic skin patches for monitoring of other diseases (e.g. respiratory), or general patient monitoring (in-patient, post-discharge, etc.) also contain cardiac monitoring capabilities.

To find out more about electronic skin patches, please refer to IDTechEx’s report, “Electronic Skin Patches 2020-2030“.

E-Textiles

Electronic textiles, or e-textiles for short, are products that involve both electronic and textile components in a single device. The idea is to combine the functionality from electronic components with the comfort, esthetics and ubiquity of textile products.

Smart clothing for sports used to be the major focus in the e-textiles industry – companies have made many attempts to develop mass-market products. Though e-textile companies may choose different strategies and technologies, the end products all have very similar functionalities such as tracking of activity, heart rate, respiratory rate, etc. There remains sporadic interest from apparel giants for sports applications, but many of the e-textile players have now shifted towards healthcare applications.

There is a close match between sports and medicine as the same vital signs are being detected and the same form factor (clothing) can be used. Within smart clothing, companies can design in 12- or even 15 leads for ECG readings, much more than the 2 – 3 offered by electronic skin patches. Moreover, smart clothing can be much more comfortable than electronic skin patches. The latter often causes discomfort through issues such as skin irritation. Despite the higher regulatory hurdle in healthcare vs sports, companies see the long-term benefit of e-textiles in healthcare. Smart clothing that is as comfortable as everyday clothing while still delivering medical-grade data will be key to automatic and continuous monitoring of patients going about their daily lives.

E-textiles are not just limited to clothing as a form factor, they may be incorporated into non-apparel textiles such as bed sheets, blankets, and even furniture. Regardless, the key for e-textile players today is validate their product through regulatory bodies such as the FDA, and to look into reimbursement for their products.

To find out more about electronic textiles, please refer to IDTechEx’s report, “E-textiles and Smart Clothing 2020-2030: Technologies, Markets and Players“.

What’s Next?

The COVID-19 pandemic has forced clinicians around the world to test out medical technologies to continue treating and monitoring their patients remotely. Though many physicians will eventually return to in-person practice, a fraction will continue utilizing telemedicine and remote patient monitoring technologies. Technologies such as electronic skin patches and e-textiles have much to offer to the healthcare system – remote patient monitoring has been shown to result in better outcomes, higher quality of care, and increased patient satisfaction. Healthcare systems will achieve cost savings through better management of patients and thus avoiding costly hospitalization and emergency room visits. While reimbursement of remote patient monitoring technologies is moving in the right direction, it will remain a major hurdle for companies entering this space.

You can read the full report here: Flexible Electronics in Healthcare 2020-2030, IDTechEx

Dr. Nadia Tsao
Dr. Nadia Tsao

Dr Nadia Tsao is a Principal Analyst at IDTechEx where she has been driving the company’s research in the life sciences. Her research spans a range of topics within healthcare, including digital health, bioelectronic medicine, and tissue engineering.

Sky’s the Limit for Flemish Startup Helpilepsy

Helpilepsy app visualization for patient care

At DSP Valley, we love to see our member organizations succeed. We’re happy for them, of course! We’re also thrilled to see our digitization ecosystem thriving and rewarding innovation. That’s why we’re delighted to share exciting news about one of our startup members, Helpilepsy.

Managing Epilepsy with Digital Technology and Personalized Medicine

Launched in 2017, Helpilepsy is a platform for both patients and their care team to monitor epileptic seizures, side effects, medication and other parameters. Billed as “a complete digital solution for people with epilepsy and neurologists,” the software allows for more personalized approaches to Epilepsy in patients. Currently, patients and doctors in 5 countries (Belgium, Luxembourg, France, Germany, and Hungary) use Helpilepsy, with more expansion on the horizon.

It works like any app: a patient can download it on their app platform of choice (the Apple store, Google Play, etc) and begin using it. Physicians and healthcare workers can track and monitor patient inputs through beautifully visualized web dashboards.

Moving Forward

This summer, the team announced an exciting development: official ISO13485:2016 certification, with many thanks to their Quality and Regulatory Lead Amandine Berton. This may not sound like a huge deal, but it’s a big achievement, especially for a small startup team.

ISO certification pertains to a manufacturer’s quality management system, which in turn involves their documentation and processes. All new releases need to be fully documented, the team must be able to show clinical proof of their software’s effectiveness, new employees must go through a welcome checklist, and more. These must comply with ISO13485 in order to meet European regulations. EU regulations govern myriad elements, including customer feedback, logistics, development and more — all before a product can be sold with the CE mark within the EU single market.

The CE symbol, which we probably all recognize but never really think about, indicates “that products sold in the EEA have been assessed to meet high safety, health, and environmental protection requirements. When you buy a new phone, a teddy bear, or a TV within the EEA, you can find the CE mark on them. CE marking also supports fair competition by holding all companies accountable to the same rules.”1 Crucially, it is up to manufacturers to make sure their products adhere to CE standards and EU regulations.

Recently, the rules regarding medical devices and medical technology changed. From now on, medical software including apps like Helpilepsy and the team’s newest product, Migraine Manager, fall into a higher classification. This means that they are subject to much stricter oversight. Affected class I medical software companies have been given until 2024 to fully conform to the new regulations.

The fact that the Helpilepsy team has been able to secure ISO certification ahead of the deadline is a testament to their talent and dedication.

Top Tier

While ISO certification, and subsequent CE marking, is administratively necessary, it brings with it tangible benefits. For one thing, the team is ahead of the game. The biggest part of their work to fully comply with new regulations is complete. They can once again focus on their core business!

Moreover, the processes necessary for the certification lend further credibility to Helpilepsy’s technology. It’s a strong selling point that they can offer to potential patients, doctors, and business partners.

What’s more, as co-founder Ludovic Ampe explains, ISO certification will hopefully be a catalyst for further expansion. Since the CE mark is a European-widely recognized standard, achieving it should open up more international markets.

Last but not least, at the end of August, Helpilepsy was named one of the top 10 health tech startups in the Benelux region. A great achievement — Congratulations!

Be sure to keep your eye on this up-and-coming organization! We’re willing to bet they have even more exciting developments in store 😊

You can visit Helpilepsy at their website and follow them via their social media channels:

What You Need To Bring an Innovative Healthcare Product To Market

Innovating in the field of medical devices can get extremely complicated and overwhelm even the most experienced engineers.

For startups all the necessary areas of expertise can prove be too much, but even for well-established medical companies it is not an easy task to keep up with the ever-changing field, increased complexity and regulations of medical devices.

Nyxoah – Surgical implant tool
Nyxoah – Surgical implant tool
Areas of expertise

The first thing you need is a multidisciplinary team that covers all the different areas of expertise. For startups, this is often impossible, and they need to look for external services to complement their skills. If you take this external route, look for teams that are flexible and can work well together with your team. Look for a team that has an extensive history in medical products and other fields. They can provide a wealth of expertise and experience in various areas that even some medical device manufacturers may lack internally. This will ensure you look at your project from different angles and transfer solutions from other fields.

Experienced design firms have tried and tested development methodologies that will guide you through the whole process. They know where the pitfalls are, and can work according to the required ISO standards.

MEDEC - Anaesthesia device
MEDEC – Anaesthesia device
Start from the user

Human factors, user-centric design, and usability engineering play an increasingly important role in the medical device industry.

Designing for healthcare must start from the user (patient, doctor, caregiver), not the technology. Particularly crucial is designing for human factors from patient acceptance, to increasing patient and user safety, to minimizing the risks of potential human errors.

Acquiring insights into user needs, fears, and use from patients and workers is essential for designing a successful medical device. Therefore, extensive user research and testing are an absolute must in the development process.

A couple sleeps peacefully. The man is wearing a medical patch device on his throat
Nyxoah – Obstructive Sleep Apnoea implant
Connected

Medical devices are not stand alone anymore. Many products are connected to platforms and exchange data with patients, doctors, and caregivers. This requires new insights and disciplines to design frustration-free user interfaces, secure data protection, and interconnected products.

Additionally, some healthcare is shifting away from hospitals and other medical environments to patients’ homes. Connected smart products collect medical data and make it available for patients, and doctors, in real time, to make the right decisions. This not only makes the development of products more complex, with smart censors and high connectivity, but also demands a complete rethinking of how healthcare services are delivered. These products become product-service systems that require a service design expertise to make them successful on the market.

TERUMO BCT – Laboratory tube sealing
TERUMO BCT – Laboratory tube sealing
Production

Finally, when you have your minimal viable product, proof of concept, and final prototype, you must be able to produce it in a consistent error-free way.

Thinking about this is not something you start with after the design is finished. Design for manufacturing should already be part of the design process from the very beginning. Production and product cost need to be taken into account at the very start of development.

Finding the right partner to produce your product is also essential, and if you start early enough, a good partner will help you in the last stage to go to production.

UNEEG Medical– For long-term monitoring EEG
UNEEG Medical– For long-term monitoring EEG
Go to market

Established healthcare companies have the necessary expertise to market their products in-house. For startups this can be a challenge. Even the best designed product can fail if it is not brought to market the right way. At the start of the development, product marketing and branding must already be part of the thinking process. This is the only way to make sure they will reinforce each other and avoid unpleasant surprises at launch.

How does Achilles face medical design?

At Achilles, we advance healthcare through people-centered design. We prototype early and often, to ensure we keep the people we design for at the heart of the process. By putting ideas in the hands of users from low-fidelity paper interfaces to 3D-printed prototypes and high-level immersion VR, we systematically identify improvements and preventively exclude risks without compromising our intuition.

We believe better health is achieved by engaging people at every stage of their health journey. Our cross functional team — consisting of biomedical engineers, designers, usability experts, and a doctor — work across disciplines to integrate people’s needs with responsible technology and sustainable business models. We strive to establish innovative healthcare service solutions that drive business value by advancing the standard of healthcare.


Visit Achilles Design at MEDICA Düsseldorf from 16-19/11/2020.

Written by

Jurgen Oskamp
Jurgen Oskamp

Founding partner at Achilles Design

Smart Cities Vlaanderen: More powerful than ever

Smart Cities Vlaanderen logo

In July, Citylab fully integrated its work for the Innovative Business Network (IBN) Smart Cities Vlaanderen with partner DSP Valley. “After more than a year and a half of successful collaboration with DSP Valley, it is time for this step,” says Citylab director Marc Schepers. “By bringing our business cluster fully under one roof, we will become more effective and create room for further development of Smart Cities Vlaanderen!”   

DSP Valley and Citylab are the driving forces behind the IBN Smart Cities Vlaanderen, which was started more than a year and a half ago with the support of various big names in the tech world. Although still at an early stage as an organization, the cluster has had a promising start, successfully bridging the gap between business and government. Their strength has been converting Smart Cities issues into concrete business cases for companies.

Dieter Therssen (left), CEO of DSP Valley, and Marc Schepers (right), director of Citylab, signing the merger official agreement regarding Smart Cities Vlaanderen.
Dieter Therssen (left), CEO of DSP Valley, and Marc Schepers (right), director of Citylab, signing the official merger agreement.

The two organizations are convinced that they are coming together at the right moment. Schepers declared, “It is now time to connect even more and to continue our cooperation with DSP Valley. That is why we decided to fully shift our co- promotorship to DSP Valley.” 

From his perspective as CEO of DSP Valley, Dieter Therssen emphasizes the need for an encompassing structure. “In Flanders, several initiatives have emerged in the field of smart cities in recent years , but there is not yet an overarching approach across the region. At the same time, the demand from local governments for smart city solutions is increasing exponentially,” he states. 

CEO of Living Tomorrow and president of Smart Cities Vlaanderen, Joachim De Vos agrees that the time for joining forces is ripe as the movement for smart cities gains momentum. This merger between DSP Valley and City Labs is the first step toward an even stronger Smart Cities Vlaanderen consortium.

Flanders Innovation and Entrepreneurship (VLAIO), which financially supports the consortium through its subsidies for IBNs, is also on board. Asked for comment, a spokesperson confirmed, “This evolution makes the position of Smart Cities Vlaanderen more powerful and stable and allows them to support companies even better in the smart cities domain. It will enable the cluster to actively contribute to developing Flanders into a smart region.”

 The integration between Citylab and DSP Valley “enables us to accelerate our role as a matchmaker between companies and local authorities, building business consortia and creating a digital platform in the quadruple helix,” says Peter Vandeurzen, Cluster Manager for Smart Cities Vlaanderen. DSP Valley will further expand and strengthen the cluster from its office at the Corda Campus in Hasselt.

A bundled structure can also be the starting point for jumping from Flanders to Europe in the context of digitization. By coordinating smart cities initiatives, the desired critical mass and strength can be achieved to make Flanders a leading smart region in Europe.

All information about the Smart Cities Vlaanderen community and how to participate can be found on their website.

Contact
info@smartcities.vlaanderen
www.smartcities.vlaanderen

Smart Cities Vlaanderen Cluster
The cluster was founded by a number of steering group members and co-financed by VLAIO. The founding steering committee members are: Living Tomorrow with Joachim De Vos, chairman of the steering group, Nokia, Cronos Group, MyCsN, Tractebel Engie, Mediahuis, Hydroscan, Niko, and AllThingsTalk.

Together for strong, ambitious innovation
More starters, more stayers, more growers: that’s what we aim for! The Innovation & Entrepreneurship Agency and the Innovative Business Networks want to facilitate cooperation between companies, knowledge institutions and governments. Smart Cities Vlaanderen is one of these innovative business networks. Discover the others at the website. #growingstrong #sterkgroeien   

AI-based platform Hai brings COVID-related safety awareness to the public

To help face COVID-19 and ensure both health and well-being, the European service provider in product innovation Verhaert Masters in Innovation developed ‘Hai’: a digital demonstrator platform, based on user-centered Artificial Intelligence.

https://lh5.googleusercontent.com/J_vc4eMLoMacZn_7gu_ur_kW2I9_OEkEzcfzfxUCB-JdV6_GAogLB10MguQRkHhs9FtZjEQD7iwkhwJGugESBZF4vpSN15-KG9kTUrfXVCok-hOR0hSKxQotVXHNUzdeyvomX-29
New platform Hai for safer behavior

After 3 months of lockdown, strong regulations, and economic struggle, we’re carefully going back to our “normal” life. It’s a challenge to find the right balance between the well-being and health of the population, and a steady recovery after this critical period. 

To provide an answer to this challenging situation, Verhaert developed a demonstrator of a digital platform that uses AI-based Computer Vision to extract essential metrics from any room or area. The ‘Hai’ platform can bring COVID-related safety awareness to the public, allowing them to make informed decisions. It’s not a surveillance system, but a tool to empower people with relevant data about a specific space and to nudge them in a positive way towards a safer behavior. 

Components of the AI system

The digital platform consists of 3 components:

  1. Cameras to record a live feed of the people present in a particular area, the people entering and leaving the place.
  2. An edge AI system to process the footage on-the-fly. The system extracts the number of people, how many of them wear face masks, and measures the physical distance between individuals.
  3. Online dashboard to display this information in a friendly and educational way. 

Let’s say you work at your desk and you want to get something from the cafeteria. On the dashboard, you can see whether or not you should wait a while until fewer people are present at that place.

https://lh4.googleusercontent.com/HKdRn9P1SJ-HqE00Ow8y1MhqhjMBGZE45eMTYr_CbbrDXiG9_nXgG-A69xKQJlHMo9UBztFmxnvi8Wujzuczi3uSHXmOzPA7WolEFDlkMMEWYSP2yI5005V9StiR0flAtSjLgA44
Artificial Intelligence algorithms

Verhaert’s AILab trained the AI algorithms to calculate the number of people present in any space and detect how many of them are wearing face masks. What about the security and protection of private data? The cameras’ live feed never leaves the AI system. The edge AI device treats the information locally and only transfers processed and anonymous data to the dashboard. No human being sees, stores or transfers any images, safeguarding everyone’s identity and privacy.

Hai is about our health

The online platform is a tool to organize ourselves and our spaces, it doesn’t judge individuals. It allows us to access real-time information from anywhere to make informed consent whether or not to enter a room. Hai will display the total number of people in an area versus the maximum quantity allowed. Additionally, it creates a heat map of “close-encounters” (distance less than 1.5 meters) giving valuable information for cleaning, disinfecting, optimizing walking flows, and detecting bottlenecks.

Hai is about you

Hai will recognize in the near future  your gestures, so if you wave hello to the camera or raise a thumb, Hai will respond interactively. The digital platform has been created to demonstrate how AI technology can help us in managing our presence and common spaces better during COVID. Ensuring we all stay safe, not only at home.

– – – – – –

About VERHAERT

Since 1969, Verhaert Masters in Innovation has pioneered the field of product innovation. As a leading innovation group in integrated product development, Verhaert assists companies and entrepreneurs in the development and implementation of successful innovation processes. The group now has more than 200 employees with offices in Kruibeke, Gentbrugge, Kortrijk, Nivelles, Noordwijk, Utrecht and Aveiro.

For more information, please visit our website.

Contact
Nicky Sterck, Communicatie Verhaert Masters in Innovation
T +32 3 250 19 00 – M +32 491 24 98 64 – nicky.sterck@verhaert.com Jochem Grietens, Coordinator AILab at Verhaert Masters in Innovation
T +32 3 250 19 00 – jochem.grietens@verhaert.com

You can visit Verhaert at their website and follow them via their social media channels

This is a press release from the Verhaert Team

From core technology to marketable products: Comate

The step from break-through technology to a marketable product or machine is a challenging journey. After years of research and hard work, the proof of concept needs to be translated to a market ready product. Shifting focus from the core business to product development brings many risks and requires a complete change in competencies. However, making the right choices in the development process is crucial for the success of the product. And that’s where Comate comes in.

In order to come to innovative, break-through technology that challenges the state of the art, often years of research and great focus is needed. It’s an immense achievement on its own, to finally have the core technology on point and to have a proof of concept. But it doesn’t stop there. Eventually you want this technology to bring value. You want people to benefit from the blood, sweat and tears. Eventually this technology needs to be translated to a marketable product or machine.

Unfortunately, there’s a huge gap between a proof of concept setup and a market ready product that can be produced reliably a 100, 1.000, 10.000, 100.000 times. The expertise on the core technology that has been built up over the years doesn’t necessarily bring the skills to get a deep understanding of the market, all the stakeholders (including the end-users), the product roadmap or the know-how on prototyping, product design, materials, production techniques, suitable suppliers and so forth.

Universities, start-ups, SME’s and multinationals alike, face the choice of shifting their focus from their core technology to product development. This requires a change in competencies and the risk of falling behind on the core expertise. Universities want to keep the focus on research. For start-ups it’s not evident to suddenly hire engineers and product developers and put them on the payroll. SME’s and multinationals might lack the time or manpower to fully develop this technology and get it market ready. That is where Comate comes in.

Our expertise is in the process of developing marketable, high-tech, mechatronic, mechanical or electronic products and machines, starting from scratch, from a technological proof of concept, a prototype or from an existing device that needs to be made faster, more robust, waterproof or optimized for production. For this process to be successful, collaboration is key.

Making the right choices

Sharing expertise and co-creation is crucial in letting a company grow. An example of such a beautiful collaboration is the NGRAVE ZERO, the most secure hardware wallet on the planet. This is a Belgian co-development grown out of the idea of start-up NGRAVE and supported in development by Comate, imec and KU Leuven.

The frustration felt when being the victim of several cryptocurrency thefts and being unable to recover the funds is what brought the three founders together. They decided to develop a hardware device able to generate private keys and public keys of a blockchain wallet 100% offline, completely ‘air-gapped’ and therefore immune to online remote attacks. They had one shot at developing the hardware wallet, and decided to partner up with the experts of Comate to assist them with the engineering.

NGRAVE has launched a pre-order campaign on Indiegogo and has received no less than 1450% of their funding goal in one month. “Comate has proved to successfully combine creativity with technical excellence. Its design and engineering specialists took a lot of initiative in exploring material characteristics and technology applications to push product performance and ease of use. They contributed significantly to the engineering of the high-end NGRAVE ZERO crypt wallet, which guarantees robust operation and introduces a new benchmark in security,” shares Ruben Merre, CEO of NGRAVE.

Sharing expertise is key

“The combination between the client’s expertise as entrepreneur and our expertise to translate an idea into a high quality product is a good example of the success of co-creation,” says Wouter Foulon, founder of Comate. Whether it be the most secure hardware wallet on the planet, a medical device sold worldwide or an award-winning laser cleaning machine, sharing expertise is key in the development of innovative products.

Curious to know how we can assist your project? Get in touch via alexander.blockhuys@comate.be

This article was written by the Comate Team

Visit Comate at their website and follow them via their social media channels

ILaB Blows Industry Away with Award-Winning Audio Technology

This past May, the cloud-based communication giant Cision’s website published an article loudly proclaiming, “TCL 9 Series RAY•DANZ Soundbar with Dolby Atmos Receives iF DESIGN AWARD 2020 For Its Unique Design Featuring TCL’s Innovative Acoustic Reflector TechnologyOne.” The award-winning audio technology in that Soundbar was developed right here in the DSP Valley ecosystem by the young team of sound engineers at ILaB.

First collaboration, first prizes

The RAY•DANZ soundbar is the first product to use ILaB’s in-house developed audio technologies, the XBowFlector. As the Cision article announced, the soundbar won”best in show” at IFA 2019 (Berlin) and CES 2020 (Las Vegas) along with several other awards.

This XBowFlector IP is owned by the ILab, who has also started licensing it, in different executions, to various ODM. This makes it possible to create the best sound bars in their class at a very attractive price.

“When we demonstrate the immersiveness of our XBowFlector-based soundbars, the first reaction of our visitors is usually one of disbelief.  The single small form-factor soundbar generates sounds all around — generating leaves rustling in the far left-corner, birds fluttering at the far right top of the room, while the falling rain can be heard throughout the room.  More than once, a visitor will get up to check if there isn’t a multi-speaker setup hidden away behind the curtains… only to find an empty room except for our soundbar.”

Philip Loubele, CEO ILaB

 Award-Winning Audio Technology: XBowFlector

For a sound reproduction system, user expectations include a good, immersive sound with a wide sweet spot and good speech intelligibility. XBowFlector technology was developed in order to achieve this from a compact form factor (such as a soundbar).

This XBowFlector technology has a sophisticated arrangement of speakers and reflectors to produce a wide, natural and immersive sound experience with a single soundbar unit.

Operation principle
An internal view of the firing speakers and reflectors used in ILaB's award-winning audio technology

The basis of XBowFlector technology is a 3 channel speaker system: two side channels and one center channel, located between two reflectors.

Every channel is reproduced by 1 or more drivers (depending on implementation). In a compact execution, these combinations of drivers reproduce mid- and high frequencies. For bass, an external sub-woofer or internal woofer is required.

The side channels

The drivers of the two side channels are angled towards a well-calculated and defined reflector.  The reflector beams the sound from the drivers towards the sides under a well-defined angle. This angle is determined in such a way that in typical living room the sound is beamed to the walls and reflected towards the listener. The combination of the shape of the reflectors and the directivity pattern of the drivers makes sure that, while all frequencies are beamed, the higher frequencies are more focused to the sides. These high frequencies are thus reflected by the side walls.

Listeners perceive this high frequency as coming from a sound stage much larger than the size of the XBowFlector device. The mid frequencies—which are less beamed—makes this a homogeneous sound stage.

An additional benefit of the XBowFlector technology is the enlarged left and right channel separation due to the outward beaming.

Visual descriptions of how ILaB's award-winning audio side channels beam high frequency cues to create a homogenous soundstage

This high channel separation in combination with the reflected high frequencies cues contribute to a large natural sweepspot, in contrast to today’s mainstream virtualizers.

The center channel

The final cherry on the audio cake is a dedicated front firing loudspeaker system is used to reproduce the center channel, with accurate voice positioning and high voice intelligibility.

A depiction of how the center channel beams sound directly to the listener

About ILaB

ILaB is a young company of ex-Philips audio experts who are passionate about audio and strive to develop novel and innovative audio concepts.

Despite being a young company, we are a very experienced team with a long track record. In the past, we have earned our spurs as head of the Audio Innovation (R&D) lab at Philips and Gibson, of which we became independent in 2018. Today, with our audio expertise and facilities, we support well-known audio brands worldwide, and market our own innovations and IP – for sound bars, smart speakers, and headphones – under a licensing model.

Visit ILaB at their website and follow them on LinkedIn

* TCL is a leading brand in the global TV industry and wants to become a leading player in the audio market by using innovative audio technologies.  To do this, they’ve created TCL entertainment solutions. ILaB was selected as a launching party to make this possible.  

This article was written by the iLab Team and edited by Jane Judge

Lung Diagnostics Startup ArtiQ Keeps Innovating During Pandemic

Leuven-based startup ArtiQ has had plenty to keep them busy these last months. Using artificial intelligence-based software, ArtiQ.PFT, they help doctors interpret pulmonary function tests and improve the diagnostic environment for respiratory diseases. As the covid-19 pandemic hit, their lung diagnostic innovation has found fertile ground.

lung diagnostic testing in a hospital

Lung diagnostics innovation in the time of Corona

Recently, ArtiQ CEO and co-founder Marko Topalovic wrote about how he and his team have been tackling the Covid-19 pandemic for Eureca (European Respiratory Cluster Antwerp). In his article, Marko explains how the pandemic shifted ArtiQ’s focus somewhat.

“Due to the COVID-19 pandemic, all lung function tests were shut down during a certain time. Now hospitals are restarting their practice and lung function tests can be used to monitor the progression of the disease,” he writes.

After requests from doctors inundated by pandemic patients, Marko and the team decided to offer their software free of licensing fees until September. As such, their diagnostic AI technology is increasingly being used to follow-up on patients, in addition to its original intention to help with initial diagnoses.

ArtiQ.PFT, is already used in the interpretation of more than 50.000 lung function tests in UZ Leuven, CHU Saint-Pierre, OLV Aalst and ZOL Genk.

Marko Topalovic

Following Patient Roadmaps

As Covid-19 patients leave hospitals, they’re increasingly visiting their primary care doctors for check ups. This means that non-hospital healthcare providers are in more need of lung care technology. In response, ArtiQ is looking to move out of hospitals, too, and is actively working on bringing their technological support to GPs.

“ArtiQ plans to integrate AI-expertise with spirometry to support GPs in identifying lung diseases and improving their decision making,” Marko states. “In the future, such tool may play an important role in the follow-up of COVID-19 patients on the GP level.”

A stethoscope lying on a cloth

ArtiQ in drug development

Given the success they’re seeing in patient follow-up, the team at ArtiQ is also looking into expanding their technologies into pharmaceuticals and drug development. They’re specifically looking to bring their technology to clinical trials and improving quality control of lung function measurements.

As Marko explains, “In respiratory drug development, lung function is the primary clinical tool to assess the efficiency of treatment. Therefore, it is critical for pharmaceutical companies and the success of their clinical trials that the results of these tests are consistent and reliable.” ArtiQ’s new AI-based software can do just this.

Using AI to improve healthcare

Ultimately, it’s the AI ArtiQ integrates and innovates that’s making the big difference. The ArtiQ team is profoundly aware of the changes AI is bringing to the healthcare system. As they see it, using artificial intelligence in healthcare can provide tangible support for healthcare workers. Three top examples, elaborated in a recent blog post. include:

  1. Providing consistent decision support for healthcare providers, especially where large amounts of data are involved
  2. Reducing the administrative burden so that healthcare professionals spend less time on paperwork
  3. Creating more time to focus on human interaction. The preceding two will allow health professionals to have more time with patients and for meaningful collaborations with colleagues

You can visit ArtiQ at their website and follow them via their social media channels

Deltaray keeps the momentum going

In June 2020, Flemish startup Deltaray launched their disruptive X-ray technology: 3D Xray equipment for 100% inspection of mission-critical mechanical parts. Since then, they’ve been making a splash.

Officially launched

From 15 to 17 June, they held an open house at Averana Hasselt, Deltaray’s automation partner, which was featured not only in the Gazet van Antwerpen but also garnered visual attention from Flemish television channel Kanaal Z.

Making waves

In the midst of the Covid-19 crisis, the Deltaray team has seen their hard work pay off with two recent accolades:

Belgian finalist for the TAFTIE e-pitch 16th of June : Deltaray
  • Just last week, the Tech Tour Photonics Programme announced Deltaray had been selected for their 2020 edition
    • Designed by entrepreneurs for startups developing tech solutions in the photonics field, the program includes a series of online sessions and a 2-day live event that would take place in September 2020 (date will be announced soon) in Eindhoven, The Netherlands.

As befits an exciting startup, the Deltaray team is actively looking ahead. We’ll be watching for new developments – stay tuned!

You can visit Deltaray’s website and follow them on LinkedIn